Files
ComfyUI-Model-Manager/py/information.py
2025-02-03 20:30:07 +08:00

438 lines
16 KiB
Python

import os
import re
import yaml
import requests
import markdownify
from abc import ABC, abstractmethod
from urllib.parse import urlparse, parse_qs
from . import utils
class ModelSearcher(ABC):
"""
Abstract class for model searcher.
"""
@abstractmethod
def search_by_url(self, url: str) -> list[dict]:
pass
@abstractmethod
def search_by_hash(self, hash: str) -> dict:
pass
class UnknownWebsiteSearcher(ModelSearcher):
def search_by_url(self, url: str):
raise RuntimeError(f"Unknown Website, please input a URL from huggingface.co or civitai.com.")
def search_by_hash(self, hash: str):
raise RuntimeError(f"Unknown Website, unable to search with hash value.")
class CivitaiModelSearcher(ModelSearcher):
def search_by_url(self, url: str):
parsed_url = urlparse(url)
pathname = parsed_url.path
match = re.match(r"^/models/(\d*)", pathname)
model_id = match.group(1) if match else None
query_params = parse_qs(parsed_url.query)
version_id = query_params.get("modelVersionId", [None])[0]
if not model_id:
return []
response = requests.get(f"https://civitai.com/api/v1/models/{model_id}")
response.raise_for_status()
res_data: dict = response.json()
model_versions: list[dict] = res_data["modelVersions"]
if version_id:
model_versions = utils.filter_with(model_versions, {"id": int(version_id)})
models: list[dict] = []
for version in model_versions:
model_files: list[dict] = version.get("files", [])
model_files = utils.filter_with(model_files, {"type": "Model"})
shortname = version.get("name", None) if len(model_files) > 0 else None
for file in model_files:
fullname = file.get("name", None)
extension = os.path.splitext(fullname)[1]
basename = os.path.splitext(fullname)[0]
metadata_info = {
"website": "Civitai",
"modelPage": f"https://civitai.com/models/{model_id}?modelVersionId={version.get('id')}",
"author": res_data.get("creator", {}).get("username", None),
"baseModel": version.get("baseModel"),
"hashes": file.get("hashes"),
"metadata": file.get("metadata"),
"preview": [i["url"] for i in version["images"]],
}
description_parts: list[str] = []
description_parts.append("---")
description_parts.append(yaml.dump(metadata_info).strip())
description_parts.append("---")
description_parts.append("")
description_parts.append(f"# Trigger Words")
description_parts.append("")
description_parts.append(", ".join(version.get("trainedWords", ["No trigger words"])))
description_parts.append("")
description_parts.append(f"# About this version")
description_parts.append("")
description_parts.append(markdownify.markdownify(version.get("description", "<p>No description about this version</p>")).strip())
description_parts.append("")
description_parts.append(f"# {res_data.get('name')}")
description_parts.append("")
description_parts.append(markdownify.markdownify(res_data.get("description", "<p>No description about this model</p>")).strip())
description_parts.append("")
model = {
"id": file.get("id"),
"shortname": shortname or basename,
"fullname": fullname,
"basename": basename,
"extension": extension,
"preview": metadata_info.get("preview"),
"sizeBytes": file.get("sizeKB", 0) * 1024,
"type": self._resolve_model_type(res_data.get("type", "unknown")),
"pathIndex": 0,
"description": "\n".join(description_parts),
"metadata": file.get("metadata"),
"downloadPlatform": "civitai",
"downloadUrl": file.get("downloadUrl"),
"hashes": file.get("hashes"),
}
models.append(model)
return models
def search_by_hash(self, hash: str):
if not hash:
raise RuntimeError(f"Hash value is empty.")
response = requests.get(f"https://civitai.com/api/v1/model-versions/by-hash/{hash}")
response.raise_for_status()
version: dict = response.json()
model_id = version.get("modelId")
version_id = version.get("id")
model_page = f"https://civitai.com/models/{model_id}?modelVersionId={version_id}"
models = self.search_by_url(model_page)
for model in models:
sha256 = model.get("hashes", {}).get("SHA256")
if sha256 == hash:
return model
return models[0]
def _resolve_model_type(self, model_type: str):
map_legacy = {
"TextualInversion": "embeddings",
"LoCon": "loras",
"DoRA": "loras",
"Controlnet": "controlnet",
"Upscaler": "upscale_models",
"VAE": "vae",
"unknown": "unknown",
}
return map_legacy.get(model_type, f"{model_type.lower()}s")
class HuggingfaceModelSearcher(ModelSearcher):
def search_by_url(self, url: str):
parsed_url = urlparse(url)
pathname = parsed_url.path
space, name, *rest_paths = pathname.strip("/").split("/")
model_id = f"{space}/{name}"
rest_pathname = "/".join(rest_paths)
response = requests.get(f"https://huggingface.co/api/models/{model_id}")
response.raise_for_status()
res_data: dict = response.json()
sibling_files: list[str] = [x.get("rfilename") for x in res_data.get("siblings", [])]
model_files = utils.filter_with(
utils.filter_with(sibling_files, self._match_model_files()),
self._match_tree_files(rest_pathname),
)
image_files = utils.filter_with(
utils.filter_with(sibling_files, self._match_image_files()),
self._match_tree_files(rest_pathname),
)
image_files = [f"https://huggingface.co/{model_id}/resolve/main/{filename}" for filename in image_files]
models: list[dict] = []
for filename in model_files:
fullname = os.path.basename(filename)
extension = os.path.splitext(fullname)[1]
basename = os.path.splitext(fullname)[0]
description_parts: list[str] = []
metadata_info = {
"website": "HuggingFace",
"modelPage": f"https://huggingface.co/{model_id}",
"author": res_data.get("author", None),
"preview": image_files,
}
description_parts: list[str] = []
description_parts.append("---")
description_parts.append(yaml.dump(metadata_info).strip())
description_parts.append("---")
description_parts.append("")
description_parts.append(f"# Trigger Words")
description_parts.append("")
description_parts.append("No trigger words")
description_parts.append("")
description_parts.append(f"# About this version")
description_parts.append("")
description_parts.append("No description about this version")
description_parts.append("")
description_parts.append(f"# {res_data.get('name')}")
description_parts.append("")
description_parts.append("No description about this model")
description_parts.append("")
model = {
"id": filename,
"shortname": filename,
"fullname": fullname,
"basename": basename,
"extension": extension,
"preview": image_files,
"sizeBytes": 0,
"type": "unknown",
"pathIndex": 0,
"description": "\n".join(description_parts),
"metadata": {},
"downloadPlatform": "huggingface",
"downloadUrl": f"https://huggingface.co/{model_id}/resolve/main/{filename}?download=true",
}
models.append(model)
return models
def search_by_hash(self, hash: str):
raise RuntimeError("Hash search is not supported by Huggingface.")
def _match_model_files(self):
extension = [
".bin",
".ckpt",
".gguf",
".onnx",
".pt",
".pth",
".safetensors",
]
def _filter_model_files(file: str):
return any(file.endswith(ext) for ext in extension)
return _filter_model_files
def _match_image_files(self):
extension = [
".png",
".webp",
".jpeg",
".jpg",
".jfif",
".gif",
".apng",
]
def _filter_image_files(file: str):
return any(file.endswith(ext) for ext in extension)
return _filter_image_files
def _match_tree_files(self, pathname: str):
target, *paths = pathname.split("/")
def _filter_tree_files(file: str):
if not target:
return True
if target != "tree" and target != "blob":
return True
prefix_path = "/".join(paths)
return file.startswith(prefix_path)
return _filter_tree_files
def get_model_searcher_by_url(url: str) -> ModelSearcher:
parsed_url = urlparse(url)
host_name = parsed_url.hostname
if host_name == "civitai.com":
return CivitaiModelSearcher()
elif host_name == "huggingface.co":
return HuggingfaceModelSearcher()
return UnknownWebsiteSearcher()
import folder_paths
from . import config
from aiohttp import web
class Information:
def add_routes(self, routes):
@routes.get("/model-manager/model-info")
async def fetch_model_info(request):
"""
Fetch model information from network with model page.
"""
try:
model_page = request.query.get("model-page", None)
result = self.fetch_model_info(model_page)
return web.json_response({"success": True, "data": result})
except Exception as e:
error_msg = f"Fetch model info failed: {str(e)}"
utils.print_error(error_msg)
return web.json_response({"success": False, "error": error_msg})
@routes.post("/model-manager/model-info/scan")
async def download_model_info(request):
"""
Create a task to download model information.
"""
post = await utils.get_request_body(request)
try:
scan_mode = post.get("scanMode", "diff")
await self.download_model_info(scan_mode, request)
return web.json_response({"success": True})
except Exception as e:
error_msg = f"Download model info failed: {str(e)}"
utils.print_error(error_msg)
return web.json_response({"success": False, "error": error_msg})
@routes.get("/model-manager/preview/{type}/{index}/{filename:.*}")
async def read_model_preview(request):
"""
Get the file stream of the specified image.
If the file does not exist, no-preview.png is returned.
:param type: The type of the model. eg.checkpoints, loras, vae, etc.
:param index: The index of the model folders.
:param filename: The filename of the image.
"""
model_type = request.match_info.get("type", None)
index = int(request.match_info.get("index", None))
filename = request.match_info.get("filename", None)
extension_uri = config.extension_uri
try:
folders = folder_paths.get_folder_paths(model_type)
base_path = folders[index]
abs_path = utils.join_path(base_path, filename)
except:
abs_path = extension_uri
if not os.path.isfile(abs_path):
abs_path = utils.join_path(extension_uri, "assets", "no-preview.png")
return web.FileResponse(abs_path)
@routes.get("/model-manager/preview/download/{filename}")
async def read_download_preview(request):
filename = request.match_info.get("filename", None)
extension_uri = config.extension_uri
download_path = utils.get_download_path()
preview_path = utils.join_path(download_path, filename)
if not os.path.isfile(preview_path):
preview_path = utils.join_path(extension_uri, "assets", "no-preview.png")
return web.FileResponse(preview_path)
def fetch_model_info(self, model_page: str):
if not model_page:
return []
model_searcher = get_model_searcher_by_url(model_page)
result = model_searcher.search_by_url(model_page)
return result
async def download_model_info(self, scan_mode: str, request):
utils.print_info(f"Download model info for {scan_mode}")
model_base_paths = utils.resolve_model_base_paths()
for model_type in model_base_paths:
folders, extensions = folder_paths.folder_names_and_paths[model_type]
for path_index, base_path in enumerate(folders):
files = utils.recursive_search_files(base_path, request)
models = folder_paths.filter_files_extensions(files, folder_paths.supported_pt_extensions)
for fullname in models:
fullname = utils.normalize_path(fullname)
basename = os.path.splitext(fullname)[0]
abs_model_path = utils.join_path(base_path, fullname)
image_name = utils.get_model_preview_name(abs_model_path)
abs_image_path = utils.join_path(base_path, image_name)
has_preview = os.path.isfile(abs_image_path)
description_name = utils.get_model_description_name(abs_model_path)
abs_description_path = utils.join_path(base_path, description_name) if description_name else None
has_description = os.path.isfile(abs_description_path) if abs_description_path else False
try:
utils.print_info(f"Checking model {abs_model_path}")
utils.print_debug(f"Scan mode: {scan_mode}")
utils.print_debug(f"Has preview: {has_preview}")
utils.print_debug(f"Has description: {has_description}")
if scan_mode != "full" and (has_preview and has_description):
continue
utils.print_debug(f"Calculate sha256 for {abs_model_path}")
hash_value = utils.calculate_sha256(abs_model_path)
utils.print_info(f"Searching model info by hash {hash_value}")
model_info = CivitaiModelSearcher().search_by_hash(hash_value)
preview_url_list = model_info.get("preview", [])
preview_image_url = preview_url_list[0] if preview_url_list else None
if preview_image_url:
utils.print_debug(f"Save preview image to {abs_image_path}")
utils.save_model_preview_image(abs_model_path, preview_image_url)
description = model_info.get("description", None)
if description:
utils.save_model_description(abs_model_path, description)
except Exception as e:
utils.print_error(f"Failed to download model info for {abs_model_path}: {e}")
utils.print_debug("Completed scan model information.")