refactor: chat and base searcher
This commit is contained in:
@@ -5,21 +5,16 @@ import struct
|
||||
from pathlib import Path
|
||||
from typing import Dict, Any, List
|
||||
import contextlib
|
||||
import threading
|
||||
import time
|
||||
import atexit
|
||||
import socket
|
||||
import subprocess
|
||||
import sys
|
||||
import pickle
|
||||
|
||||
from leann.embedding_server_manager import EmbeddingServerManager
|
||||
from leann.searcher_base import BaseSearcher
|
||||
from leann.registry import register_backend
|
||||
from leann.interface import (
|
||||
LeannBackendFactoryInterface,
|
||||
LeannBackendBuilderInterface,
|
||||
LeannBackendSearcherInterface
|
||||
)
|
||||
|
||||
def _get_diskann_metrics():
|
||||
from . import _diskannpy as diskannpy
|
||||
return {
|
||||
@@ -52,211 +47,87 @@ class DiskannBackend(LeannBackendFactoryInterface):
|
||||
|
||||
@staticmethod
|
||||
def searcher(index_path: str, **kwargs) -> LeannBackendSearcherInterface:
|
||||
path = Path(index_path)
|
||||
meta_path = path.parent / f"{path.name}.meta.json"
|
||||
if not meta_path.exists():
|
||||
raise FileNotFoundError(f"Leann metadata file not found at {meta_path}.")
|
||||
|
||||
with open(meta_path, 'r') as f:
|
||||
meta = json.load(f)
|
||||
|
||||
# Pass essential metadata to the searcher
|
||||
kwargs['meta'] = meta
|
||||
return DiskannSearcher(index_path, **kwargs)
|
||||
|
||||
class DiskannBuilder(LeannBackendBuilderInterface):
|
||||
def __init__(self, **kwargs):
|
||||
self.build_params = kwargs
|
||||
|
||||
|
||||
def build(self, data: np.ndarray, ids: List[str], index_path: str, **kwargs):
|
||||
path = Path(index_path)
|
||||
index_dir = path.parent
|
||||
index_prefix = path.stem
|
||||
|
||||
index_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if data.dtype != np.float32:
|
||||
data = data.astype(np.float32)
|
||||
if not data.flags['C_CONTIGUOUS']:
|
||||
data = np.ascontiguousarray(data)
|
||||
|
||||
|
||||
data_filename = f"{index_prefix}_data.bin"
|
||||
_write_vectors_to_bin(data, index_dir / data_filename)
|
||||
|
||||
# Create label map: integer -> string_id
|
||||
label_map = {i: str_id for i, str_id in enumerate(ids)}
|
||||
label_map_file = index_dir / "leann.labels.map"
|
||||
with open(label_map_file, 'wb') as f:
|
||||
pickle.dump(label_map, f)
|
||||
|
||||
build_kwargs = {**self.build_params, **kwargs}
|
||||
metric_str = build_kwargs.get("distance_metric", "mips").lower()
|
||||
METRIC_MAP = _get_diskann_metrics()
|
||||
metric_enum = METRIC_MAP.get(metric_str)
|
||||
metric_enum = _get_diskann_metrics().get(build_kwargs.get("distance_metric", "mips").lower())
|
||||
if metric_enum is None:
|
||||
raise ValueError(f"Unsupported distance_metric '{metric_str}'.")
|
||||
raise ValueError(f"Unsupported distance_metric.")
|
||||
|
||||
complexity = build_kwargs.get("complexity", 64)
|
||||
graph_degree = build_kwargs.get("graph_degree", 32)
|
||||
final_index_ram_limit = build_kwargs.get("search_memory_maximum", 4.0)
|
||||
indexing_ram_budget = build_kwargs.get("build_memory_maximum", 8.0)
|
||||
num_threads = build_kwargs.get("num_threads", 8)
|
||||
pq_disk_bytes = build_kwargs.get("pq_disk_bytes", 0)
|
||||
codebook_prefix = ""
|
||||
|
||||
print(f"INFO: Building DiskANN index for {data.shape[0]} vectors with metric {metric_enum}...")
|
||||
|
||||
try:
|
||||
from . import _diskannpy as diskannpy
|
||||
with chdir(index_dir):
|
||||
diskannpy.build_disk_float_index(
|
||||
metric_enum,
|
||||
data_filename,
|
||||
index_prefix,
|
||||
complexity,
|
||||
graph_degree,
|
||||
final_index_ram_limit,
|
||||
indexing_ram_budget,
|
||||
num_threads,
|
||||
pq_disk_bytes,
|
||||
codebook_prefix
|
||||
metric_enum, data_filename, index_prefix,
|
||||
build_kwargs.get("complexity", 64), build_kwargs.get("graph_degree", 32),
|
||||
build_kwargs.get("search_memory_maximum", 4.0), build_kwargs.get("build_memory_maximum", 8.0),
|
||||
build_kwargs.get("num_threads", 8), build_kwargs.get("pq_disk_bytes", 0), ""
|
||||
)
|
||||
print(f"✅ DiskANN index built successfully at '{index_dir / index_prefix}'")
|
||||
except Exception as e:
|
||||
print(f"💥 ERROR: DiskANN index build failed. Exception: {e}")
|
||||
raise
|
||||
finally:
|
||||
temp_data_file = index_dir / data_filename
|
||||
if temp_data_file.exists():
|
||||
os.remove(temp_data_file)
|
||||
|
||||
class DiskannSearcher(LeannBackendSearcherInterface):
|
||||
class DiskannSearcher(BaseSearcher):
|
||||
def __init__(self, index_path: str, **kwargs):
|
||||
self.meta = kwargs.get("meta", {})
|
||||
if not self.meta:
|
||||
raise ValueError("DiskannSearcher requires metadata from .meta.json.")
|
||||
super().__init__(index_path, backend_module_name="leann_backend_diskann.embedding_server", **kwargs)
|
||||
from . import _diskannpy as diskannpy
|
||||
|
||||
self.embedding_model = self.meta.get("embedding_model")
|
||||
if not self.embedding_model:
|
||||
print("WARNING: embedding_model not found in meta.json. Recompute will fail if attempted.")
|
||||
|
||||
self.index_path = Path(index_path)
|
||||
self.index_dir = self.index_path.parent
|
||||
self.index_prefix = self.index_path.stem
|
||||
|
||||
# Load the label map
|
||||
label_map_file = self.index_dir / "leann.labels.map"
|
||||
if not label_map_file.exists():
|
||||
raise FileNotFoundError(f"Label map file not found: {label_map_file}")
|
||||
|
||||
with open(label_map_file, 'rb') as f:
|
||||
self.label_map = pickle.load(f)
|
||||
|
||||
# Extract parameters for DiskANN
|
||||
distance_metric = kwargs.get("distance_metric", "mips").lower()
|
||||
METRIC_MAP = _get_diskann_metrics()
|
||||
metric_enum = METRIC_MAP.get(distance_metric)
|
||||
metric_enum = _get_diskann_metrics().get(distance_metric)
|
||||
if metric_enum is None:
|
||||
raise ValueError(f"Unsupported distance_metric '{distance_metric}'.")
|
||||
|
||||
num_threads = kwargs.get("num_threads", 8)
|
||||
num_nodes_to_cache = kwargs.get("num_nodes_to_cache", 0)
|
||||
|
||||
self.num_threads = kwargs.get("num_threads", 8)
|
||||
self.zmq_port = kwargs.get("zmq_port", 6666)
|
||||
|
||||
try:
|
||||
from . import _diskannpy as diskannpy
|
||||
full_index_prefix = str(self.index_dir / self.index_prefix)
|
||||
self._index = diskannpy.StaticDiskFloatIndex(
|
||||
metric_enum, full_index_prefix, num_threads, num_nodes_to_cache, 1, self.zmq_port, "", ""
|
||||
)
|
||||
self.num_threads = num_threads
|
||||
self.embedding_server_manager = EmbeddingServerManager(
|
||||
backend_module_name="leann_backend_diskann.embedding_server"
|
||||
)
|
||||
print("✅ DiskANN index loaded successfully.")
|
||||
except Exception as e:
|
||||
print(f"💥 ERROR: Failed to load DiskANN index. Exception: {e}")
|
||||
raise
|
||||
|
||||
full_index_prefix = str(self.index_dir / self.index_path.stem)
|
||||
self._index = diskannpy.StaticDiskFloatIndex(
|
||||
metric_enum, full_index_prefix, self.num_threads,
|
||||
kwargs.get("num_nodes_to_cache", 0), 1, self.zmq_port, "", ""
|
||||
)
|
||||
|
||||
def search(self, query: np.ndarray, top_k: int, **kwargs) -> Dict[str, Any]:
|
||||
complexity = kwargs.get("complexity", 256)
|
||||
beam_width = kwargs.get("beam_width", 4)
|
||||
|
||||
USE_DEFERRED_FETCH = kwargs.get("USE_DEFERRED_FETCH", False)
|
||||
skip_search_reorder = kwargs.get("skip_search_reorder", False)
|
||||
recompute_beighbor_embeddings = kwargs.get("recompute_beighbor_embeddings", False)
|
||||
dedup_node_dis = kwargs.get("dedup_node_dis", False)
|
||||
prune_ratio = kwargs.get("prune_ratio", 0.0)
|
||||
batch_recompute = kwargs.get("batch_recompute", False)
|
||||
global_pruning = kwargs.get("global_pruning", False)
|
||||
port = kwargs.get("zmq_port", self.zmq_port)
|
||||
|
||||
if recompute_beighbor_embeddings:
|
||||
print(f"INFO: DiskANN ZMQ mode enabled - ensuring embedding server is running")
|
||||
if not self.embedding_model:
|
||||
raise ValueError("Cannot use recompute_beighbor_embeddings without 'embedding_model' in meta.json.")
|
||||
recompute = kwargs.get("recompute_beighbor_embeddings", False)
|
||||
if recompute:
|
||||
meta_file_path = self.index_dir / f"{self.index_path.name}.meta.json"
|
||||
if not meta_file_path.exists():
|
||||
raise RuntimeError(f"FATAL: Recompute mode enabled but metadata file not found: {meta_file_path}")
|
||||
zmq_port = kwargs.get("zmq_port", self.zmq_port)
|
||||
self._ensure_server_running(str(meta_file_path), port=zmq_port, **kwargs)
|
||||
|
||||
passages_file = kwargs.get("passages_file")
|
||||
if not passages_file:
|
||||
# Pass the metadata file instead of a single passage file
|
||||
meta_file_path = self.index_path.parent / f"{self.index_path.name}.meta.json"
|
||||
if meta_file_path.exists():
|
||||
passages_file = str(meta_file_path)
|
||||
print(f"INFO: Using metadata file for lazy loading: {passages_file}")
|
||||
else:
|
||||
raise RuntimeError(f"FATAL: Recompute mode enabled but metadata file not found: {meta_file_path}")
|
||||
|
||||
server_started = self.embedding_server_manager.start_server(
|
||||
port=self.zmq_port,
|
||||
model_name=self.embedding_model,
|
||||
distance_metric=kwargs.get("distance_metric", "mips"),
|
||||
passages_file=passages_file
|
||||
)
|
||||
|
||||
if not server_started:
|
||||
raise RuntimeError(f"Failed to start DiskANN embedding server on port {self.zmq_port}")
|
||||
|
||||
if query.dtype != np.float32:
|
||||
query = query.astype(np.float32)
|
||||
if query.ndim == 1:
|
||||
query = np.expand_dims(query, axis=0)
|
||||
|
||||
try:
|
||||
labels, distances = self._index.batch_search(
|
||||
query,
|
||||
query.shape[0],
|
||||
top_k,
|
||||
complexity,
|
||||
beam_width,
|
||||
self.num_threads,
|
||||
USE_DEFERRED_FETCH,
|
||||
skip_search_reorder,
|
||||
recompute_beighbor_embeddings,
|
||||
dedup_node_dis,
|
||||
prune_ratio,
|
||||
batch_recompute,
|
||||
global_pruning
|
||||
)
|
||||
|
||||
# Convert integer labels to string IDs
|
||||
string_labels = []
|
||||
for batch_labels in labels:
|
||||
batch_string_labels = []
|
||||
for int_label in batch_labels:
|
||||
if int_label in self.label_map:
|
||||
batch_string_labels.append(self.label_map[int_label])
|
||||
else:
|
||||
batch_string_labels.append(f"unknown_{int_label}")
|
||||
string_labels.append(batch_string_labels)
|
||||
|
||||
return {"labels": string_labels, "distances": distances}
|
||||
except Exception as e:
|
||||
print(f"💥 ERROR: DiskANN search failed. Exception: {e}")
|
||||
batch_size = query.shape[0]
|
||||
return {"labels": [[f"error_{i}" for i in range(top_k)] for _ in range(batch_size)],
|
||||
"distances": np.full((batch_size, top_k), float('inf'), dtype=np.float32)}
|
||||
|
||||
def __del__(self):
|
||||
if hasattr(self, 'embedding_server_manager'):
|
||||
self.embedding_server_manager.stop_server()
|
||||
|
||||
labels, distances = self._index.batch_search(
|
||||
query, query.shape[0], top_k,
|
||||
kwargs.get("complexity", 256), kwargs.get("beam_width", 4), self.num_threads,
|
||||
kwargs.get("USE_DEFERRED_FETCH", False), kwargs.get("skip_search_reorder", False),
|
||||
recompute, kwargs.get("dedup_node_dis", False), kwargs.get("prune_ratio", 0.0),
|
||||
kwargs.get("batch_recompute", False), kwargs.get("global_pruning", False)
|
||||
)
|
||||
|
||||
string_labels = [[self.label_map.get(int_label, f"unknown_{int_label}") for int_label in batch_labels] for batch_labels in labels]
|
||||
|
||||
return {"labels": string_labels, "distances": distances}
|
||||
Reference in New Issue
Block a user