refactor: chat and base searcher
This commit is contained in:
@@ -3,16 +3,9 @@ import os
|
||||
import json
|
||||
from pathlib import Path
|
||||
from typing import Dict, Any, List
|
||||
import contextlib
|
||||
import threading
|
||||
import time
|
||||
import atexit
|
||||
import socket
|
||||
import subprocess
|
||||
import sys
|
||||
import pickle
|
||||
|
||||
from leann.embedding_server_manager import EmbeddingServerManager
|
||||
from leann.searcher_base import BaseSearcher
|
||||
from .convert_to_csr import convert_hnsw_graph_to_csr
|
||||
|
||||
from leann.registry import register_backend
|
||||
@@ -38,306 +31,120 @@ class HNSWBackend(LeannBackendFactoryInterface):
|
||||
|
||||
@staticmethod
|
||||
def searcher(index_path: str, **kwargs) -> LeannBackendSearcherInterface:
|
||||
path = Path(index_path)
|
||||
meta_path = path.parent / f"{path.name}.meta.json"
|
||||
if not meta_path.exists():
|
||||
raise FileNotFoundError(f"Leann metadata file not found at {meta_path}.")
|
||||
|
||||
with open(meta_path, 'r') as f:
|
||||
meta = json.load(f)
|
||||
|
||||
kwargs['meta'] = meta
|
||||
return HNSWSearcher(index_path, **kwargs)
|
||||
|
||||
class HNSWBuilder(LeannBackendBuilderInterface):
|
||||
def __init__(self, **kwargs):
|
||||
self.build_params = kwargs.copy()
|
||||
|
||||
# --- Configuration defaults with standardized names ---
|
||||
self.is_compact = self.build_params.setdefault("is_compact", True)
|
||||
self.is_recompute = self.build_params.setdefault("is_recompute", True)
|
||||
|
||||
# --- Additional Options ---
|
||||
self.is_skip_neighbors = self.build_params.setdefault("is_skip_neighbors", False)
|
||||
self.disk_cache_ratio = self.build_params.setdefault("disk_cache_ratio", 0.0)
|
||||
self.external_storage_path = self.build_params.get("external_storage_path", None)
|
||||
|
||||
# --- Standard HNSW parameters ---
|
||||
self.M = self.build_params.setdefault("M", 32)
|
||||
self.efConstruction = self.build_params.setdefault("efConstruction", 200)
|
||||
self.distance_metric = self.build_params.setdefault("distance_metric", "mips")
|
||||
self.dimensions = self.build_params.get("dimensions")
|
||||
|
||||
if self.is_skip_neighbors and not self.is_compact:
|
||||
raise ValueError("is_skip_neighbors can only be used with is_compact=True")
|
||||
|
||||
if self.is_recompute and not self.is_compact:
|
||||
raise ValueError("is_recompute requires is_compact=True for efficiency")
|
||||
|
||||
def build(self, data: np.ndarray, ids: List[str], index_path: str, **kwargs):
|
||||
"""Build HNSW index using FAISS"""
|
||||
from . import faiss
|
||||
|
||||
path = Path(index_path)
|
||||
index_dir = path.parent
|
||||
index_prefix = path.stem
|
||||
|
||||
index_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if data.dtype != np.float32:
|
||||
data = data.astype(np.float32)
|
||||
if not data.flags['C_CONTIGUOUS']:
|
||||
data = np.ascontiguousarray(data)
|
||||
|
||||
# Create label map: integer -> string_id
|
||||
|
||||
label_map = {i: str_id for i, str_id in enumerate(ids)}
|
||||
label_map_file = index_dir / "leann.labels.map"
|
||||
with open(label_map_file, 'wb') as f:
|
||||
pickle.dump(label_map, f)
|
||||
|
||||
metric_str = self.distance_metric.lower()
|
||||
metric_enum = get_metric_map().get(metric_str)
|
||||
|
||||
metric_enum = get_metric_map().get(self.distance_metric.lower())
|
||||
if metric_enum is None:
|
||||
raise ValueError(f"Unsupported distance_metric '{metric_str}'.")
|
||||
raise ValueError(f"Unsupported distance_metric '{self.distance_metric}'.")
|
||||
|
||||
M = self.M
|
||||
efConstruction = self.efConstruction
|
||||
dim = self.dimensions
|
||||
if not dim:
|
||||
dim = data.shape[1]
|
||||
dim = self.dimensions or data.shape[1]
|
||||
index = faiss.IndexHNSWFlat(dim, self.M, metric_enum)
|
||||
index.hnsw.efConstruction = self.efConstruction
|
||||
|
||||
print(f"INFO: Building HNSW index for {data.shape[0]} vectors with metric {metric_enum}...")
|
||||
|
||||
try:
|
||||
index = faiss.IndexHNSWFlat(dim, M, metric_enum)
|
||||
index.hnsw.efConstruction = efConstruction
|
||||
|
||||
if metric_str == "cosine":
|
||||
faiss.normalize_L2(data)
|
||||
|
||||
index.add(data.shape[0], faiss.swig_ptr(data))
|
||||
|
||||
index_file = index_dir / f"{index_prefix}.index"
|
||||
faiss.write_index(index, str(index_file))
|
||||
|
||||
print(f"✅ HNSW index built successfully at '{index_file}'")
|
||||
if self.distance_metric.lower() == "cosine":
|
||||
faiss.normalize_L2(data)
|
||||
|
||||
if self.is_compact:
|
||||
self._convert_to_csr(index_file)
|
||||
|
||||
except Exception as e:
|
||||
print(f"💥 ERROR: HNSW index build failed. Exception: {e}")
|
||||
raise
|
||||
index.add(data.shape[0], faiss.swig_ptr(data))
|
||||
index_file = index_dir / f"{index_prefix}.index"
|
||||
faiss.write_index(index, str(index_file))
|
||||
|
||||
if self.is_compact:
|
||||
self._convert_to_csr(index_file)
|
||||
|
||||
def _convert_to_csr(self, index_file: Path):
|
||||
"""Convert built index to CSR format"""
|
||||
try:
|
||||
mode_str = "CSR-pruned" if self.is_recompute else "CSR-standard"
|
||||
print(f"INFO: Converting HNSW index to {mode_str} format...")
|
||||
|
||||
csr_temp_file = index_file.with_suffix(".csr.tmp")
|
||||
|
||||
success = convert_hnsw_graph_to_csr(
|
||||
str(index_file),
|
||||
str(csr_temp_file),
|
||||
prune_embeddings=self.is_recompute
|
||||
)
|
||||
|
||||
if success:
|
||||
print("✅ CSR conversion successful.")
|
||||
import shutil
|
||||
shutil.move(str(csr_temp_file), str(index_file))
|
||||
print(f"INFO: Replaced original index with {mode_str} version at '{index_file}'")
|
||||
else:
|
||||
# Clean up and fail fast
|
||||
if csr_temp_file.exists():
|
||||
os.remove(csr_temp_file)
|
||||
raise RuntimeError("CSR conversion failed - cannot proceed with compact format")
|
||||
|
||||
except Exception as e:
|
||||
print(f"💥 ERROR: CSR conversion failed. Exception: {e}")
|
||||
raise
|
||||
|
||||
|
||||
class HNSWSearcher(LeannBackendSearcherInterface):
|
||||
def _get_index_storage_status_from_meta(self) -> tuple[bool, bool]:
|
||||
"""
|
||||
Get storage status from metadata with sensible defaults.
|
||||
|
||||
Returns:
|
||||
A tuple (is_compact, is_pruned).
|
||||
"""
|
||||
# Check if metadata has these flags
|
||||
is_compact = self.meta.get('is_compact', True) # Default to compact (CSR format)
|
||||
is_pruned = self.meta.get('is_pruned', True) # Default to pruned (embeddings removed)
|
||||
|
||||
print(f"INFO: Storage status from metadata: is_compact={is_compact}, is_pruned={is_pruned}")
|
||||
return is_compact, is_pruned
|
||||
csr_temp_file = index_file.with_suffix(".csr.tmp")
|
||||
success = convert_hnsw_graph_to_csr(
|
||||
str(index_file), str(csr_temp_file), prune_embeddings=self.is_recompute
|
||||
)
|
||||
if success:
|
||||
import shutil
|
||||
shutil.move(str(csr_temp_file), str(index_file))
|
||||
else:
|
||||
if csr_temp_file.exists():
|
||||
os.remove(csr_temp_file)
|
||||
raise RuntimeError("CSR conversion failed")
|
||||
|
||||
class HNSWSearcher(BaseSearcher):
|
||||
def __init__(self, index_path: str, **kwargs):
|
||||
super().__init__(index_path, backend_module_name="leann_backend_hnsw.hnsw_embedding_server", **kwargs)
|
||||
from . import faiss
|
||||
self.meta = kwargs.get("meta", {})
|
||||
if not self.meta:
|
||||
raise ValueError("HNSWSearcher requires metadata from .meta.json.")
|
||||
|
||||
self.dimensions = self.meta.get("dimensions")
|
||||
if not self.dimensions:
|
||||
raise ValueError("Dimensions not found in Leann metadata.")
|
||||
|
||||
self.distance_metric = self.meta.get("distance_metric", "mips").lower()
|
||||
metric_enum = get_metric_map().get(self.distance_metric)
|
||||
if metric_enum is None:
|
||||
raise ValueError(f"Unsupported distance_metric '{self.distance_metric}'.")
|
||||
|
||||
self.embedding_model = self.meta.get("embedding_model")
|
||||
if not self.embedding_model:
|
||||
print("WARNING: embedding_model not found in meta.json. Recompute will fail if attempted.")
|
||||
self.is_compact, self.is_pruned = self._get_index_storage_status_from_meta()
|
||||
|
||||
# Check for embedding model override (not allowed)
|
||||
if 'embedding_model' in kwargs and kwargs['embedding_model'] != self.embedding_model:
|
||||
raise ValueError(f"Embedding model override not allowed. Index uses '{self.embedding_model}', but got '{kwargs['embedding_model']}'")
|
||||
|
||||
path = Path(index_path)
|
||||
self.index_dir = path.parent
|
||||
self.index_prefix = path.stem
|
||||
|
||||
# Load the label map
|
||||
label_map_file = self.index_dir / "leann.labels.map"
|
||||
if not label_map_file.exists():
|
||||
raise FileNotFoundError(f"Label map file not found: {label_map_file}")
|
||||
|
||||
with open(label_map_file, 'rb') as f:
|
||||
self.label_map = pickle.load(f)
|
||||
|
||||
index_file = self.index_dir / f"{self.index_prefix}.index"
|
||||
index_file = self.index_dir / f"{self.index_path.stem}.index"
|
||||
if not index_file.exists():
|
||||
raise FileNotFoundError(f"HNSW index file not found at {index_file}")
|
||||
|
||||
# Get storage status from metadata with user overrides
|
||||
self.is_compact, self.is_pruned = self._get_index_storage_status_from_meta()
|
||||
|
||||
# Allow override of storage parameters via kwargs
|
||||
if 'is_compact' in kwargs:
|
||||
self.is_compact = kwargs['is_compact']
|
||||
if 'is_pruned' in kwargs:
|
||||
self.is_pruned = kwargs['is_pruned']
|
||||
|
||||
# Validate configuration constraints
|
||||
if not self.is_compact and kwargs.get("is_skip_neighbors", False):
|
||||
raise ValueError("is_skip_neighbors can only be used with is_compact=True")
|
||||
|
||||
if kwargs.get("is_recompute", False) and kwargs.get("external_storage_path"):
|
||||
raise ValueError("Cannot use both is_recompute and external_storage_path simultaneously")
|
||||
|
||||
hnsw_config = faiss.HNSWIndexConfig()
|
||||
hnsw_config.is_compact = self.is_compact
|
||||
|
||||
# Apply additional configuration options with strict validation
|
||||
hnsw_config.is_skip_neighbors = kwargs.get("is_skip_neighbors", False)
|
||||
hnsw_config.is_recompute = self.is_pruned or kwargs.get("is_recompute", False)
|
||||
hnsw_config.disk_cache_ratio = kwargs.get("disk_cache_ratio", 0.0)
|
||||
hnsw_config.external_storage_path = kwargs.get("external_storage_path")
|
||||
|
||||
self.zmq_port = kwargs.get("zmq_port", 5557)
|
||||
|
||||
if self.is_pruned and not hnsw_config.is_recompute:
|
||||
raise RuntimeError("Index is pruned (embeddings removed) but recompute is disabled. This is impossible - recompute must be enabled for pruned indices.")
|
||||
|
||||
print(f"INFO: Loading index with is_compact={self.is_compact}, is_pruned={self.is_pruned}")
|
||||
print(f"INFO: Config - skip_neighbors={hnsw_config.is_skip_neighbors}, recompute={hnsw_config.is_recompute}")
|
||||
|
||||
self._index = faiss.read_index(str(index_file), faiss.IO_FLAG_MMAP, hnsw_config)
|
||||
|
||||
if self.is_compact:
|
||||
print("✅ Compact CSR format HNSW index loaded successfully.")
|
||||
else:
|
||||
print("✅ Standard HNSW index loaded successfully.")
|
||||
|
||||
self.embedding_server_manager = EmbeddingServerManager(
|
||||
backend_module_name="leann_backend_hnsw.hnsw_embedding_server"
|
||||
)
|
||||
if self.is_pruned and not hnsw_config.is_recompute:
|
||||
raise RuntimeError("Index is pruned but recompute is disabled.")
|
||||
|
||||
self._index = faiss.read_index(str(index_file), faiss.IO_FLAG_MMAP, hnsw_config)
|
||||
|
||||
def _get_index_storage_status_from_meta(self) -> tuple[bool, bool]:
|
||||
is_compact = self.meta.get('is_compact', True)
|
||||
is_pruned = self.meta.get('is_pruned', True)
|
||||
return is_compact, is_pruned
|
||||
|
||||
def search(self, query: np.ndarray, top_k: int, **kwargs) -> Dict[str, Any]:
|
||||
"""Search using HNSW index with optional recompute functionality"""
|
||||
from . import faiss
|
||||
|
||||
ef = kwargs.get("ef", 128)
|
||||
|
||||
|
||||
if self.is_pruned:
|
||||
print(f"INFO: Index is pruned - ensuring embedding server is running for recompute.")
|
||||
if not self.embedding_model:
|
||||
raise ValueError("Cannot use recompute mode without 'embedding_model' in meta.json.")
|
||||
|
||||
passages_file = kwargs.get("passages_file")
|
||||
if not passages_file:
|
||||
# Pass the metadata file instead of a single passage file
|
||||
meta_file_path = self.index_dir / f"{self.index_prefix}.index.meta.json"
|
||||
if meta_file_path.exists():
|
||||
passages_file = str(meta_file_path)
|
||||
print(f"INFO: Using metadata file for lazy loading: {passages_file}")
|
||||
else:
|
||||
raise RuntimeError(f"FATAL: Index is pruned but metadata file not found: {meta_file_path}")
|
||||
|
||||
meta_file_path = self.index_dir / f"{self.index_path.name}.meta.json"
|
||||
if not meta_file_path.exists():
|
||||
raise RuntimeError(f"FATAL: Index is pruned but metadata file not found: {meta_file_path}")
|
||||
zmq_port = kwargs.get("zmq_port", 5557)
|
||||
server_started = self.embedding_server_manager.start_server(
|
||||
port=zmq_port,
|
||||
model_name=self.embedding_model,
|
||||
passages_file=passages_file,
|
||||
distance_metric=self.distance_metric
|
||||
)
|
||||
if not server_started:
|
||||
raise RuntimeError(f"Failed to start HNSW embedding server on port {zmq_port}")
|
||||
|
||||
self._ensure_server_running(str(meta_file_path), port=zmq_port, **kwargs)
|
||||
|
||||
if query.dtype != np.float32:
|
||||
query = query.astype(np.float32)
|
||||
if query.ndim == 1:
|
||||
query = np.expand_dims(query, axis=0)
|
||||
|
||||
if self.distance_metric == "cosine":
|
||||
faiss.normalize_L2(query)
|
||||
|
||||
try:
|
||||
self._index.hnsw.efSearch = ef
|
||||
params = faiss.SearchParametersHNSW()
|
||||
params.zmq_port = kwargs.get("zmq_port", self.zmq_port)
|
||||
params.efSearch = ef
|
||||
params.beam_size = 2 # Match research system beam_size
|
||||
|
||||
batch_size = query.shape[0]
|
||||
distances = np.empty((batch_size, top_k), dtype=np.float32)
|
||||
labels = np.empty((batch_size, top_k), dtype=np.int64)
|
||||
|
||||
self._index.search(query.shape[0], faiss.swig_ptr(query), top_k, faiss.swig_ptr(distances), faiss.swig_ptr(labels), params)
|
||||
|
||||
# 🐛 DEBUG: Print raw faiss results before conversion
|
||||
print(f"🔍 DEBUG HNSW Search Results:")
|
||||
print(f" Query shape: {query.shape}")
|
||||
print(f" Top_k: {top_k}")
|
||||
print(f" Raw faiss indices: {labels[0] if len(labels) > 0 else 'No results'}")
|
||||
print(f" Raw faiss distances: {distances[0] if len(distances) > 0 else 'No results'}")
|
||||
|
||||
# Convert integer labels to string IDs
|
||||
string_labels = []
|
||||
for batch_idx, batch_labels in enumerate(labels):
|
||||
batch_string_labels = []
|
||||
print(f" Batch {batch_idx} conversion:")
|
||||
for i, int_label in enumerate(batch_labels):
|
||||
if int_label in self.label_map:
|
||||
string_id = self.label_map[int_label]
|
||||
batch_string_labels.append(string_id)
|
||||
print(f" faiss[{int_label}] -> passage_id '{string_id}' (distance: {distances[batch_idx][i]:.4f})")
|
||||
else:
|
||||
unknown_id = f"unknown_{int_label}"
|
||||
batch_string_labels.append(unknown_id)
|
||||
print(f" faiss[{int_label}] -> {unknown_id} (NOT FOUND in label_map!)")
|
||||
string_labels.append(batch_string_labels)
|
||||
|
||||
return {"labels": string_labels, "distances": distances}
|
||||
|
||||
except Exception as e:
|
||||
print(f"💥 ERROR: HNSW search failed. Exception: {e}")
|
||||
raise
|
||||
|
||||
def __del__(self):
|
||||
if hasattr(self, 'embedding_server_manager'):
|
||||
self.embedding_server_manager.stop_server()
|
||||
|
||||
params = faiss.SearchParametersHNSW()
|
||||
params.zmq_port = kwargs.get("zmq_port", 5557)
|
||||
params.efSearch = kwargs.get("ef", 128)
|
||||
params.beam_size = 2
|
||||
|
||||
batch_size = query.shape[0]
|
||||
distances = np.empty((batch_size, top_k), dtype=np.float32)
|
||||
labels = np.empty((batch_size, top_k), dtype=np.int64)
|
||||
|
||||
self._index.search(query.shape[0], faiss.swig_ptr(query), top_k, faiss.swig_ptr(distances), faiss.swig_ptr(labels), params)
|
||||
|
||||
string_labels = [[self.label_map.get(int_label, f"unknown_{int_label}") for int_label in batch_labels] for batch_labels in labels]
|
||||
|
||||
return {"labels": string_labels, "distances": distances}
|
||||
Reference in New Issue
Block a user