* Add ty type checker to CI and fix type errors - Add ty (Astral's fast Python type checker) to GitHub CI workflow - Fix type annotations across all RAG apps: - Update load_data return types from list[str] to list[dict[str, Any]] - Fix base_rag_example.py to properly handle dict format from create_text_chunks - Fix type errors in leann-core: - chunking_utils.py: Add explicit type annotations - cli.py: Fix return type annotations for PDF extraction functions - interactive_utils.py: Fix readline import type handling - Fix type errors in apps: - wechat_history.py: Fix return type annotations - document_rag.py, code_rag.py: Replace **kwargs with explicit arguments - Add ty configuration to pyproject.toml This resolves the bug introduced in PR #157 where create_text_chunks() changed to return list[dict] but callers were not updated. * Fix remaining ty type errors - Fix slack_mcp_reader.py channel parameter can be None - Fix embedding_compute.py ContextProp type issue - Fix searcher_base.py method override signatures - Fix chunking_utils.py chunk_text assignment - Fix slack_rag.py and twitter_rag.py return types - Fix email.py and image_rag.py method overrides * Fix multimodal benchmark scripts type errors - Fix undefined LeannRetriever -> LeannMultiVector - Add proper type casts for HuggingFace Dataset iteration - Cast task config values to correct types - Add type annotations for dataset row dicts * Enable ty check for multimodal scripts in CI All type errors in multimodal scripts have been fixed, so we can now include them in the CI type checking. * Fix all test type errors and enable ty check on tests - Fix test_basic.py: search() takes str not list - Fix test_cli_prompt_template.py: add type: ignore for Mock assignments - Fix test_prompt_template_persistence.py: match BaseSearcher.search signature - Fix test_prompt_template_e2e.py: add type narrowing asserts after skip - Fix test_readme_examples.py: use explicit kwargs instead of **model_args - Fix metadata_filter.py: allow Optional[MetadataFilters] - Update CI to run ty check on tests * Format code with ruff * Format searcher_base.py
This commit is contained in:
@@ -581,7 +581,18 @@ class TestQueryTemplateApplicationInComputeEmbedding:
|
||||
|
||||
# Create a concrete implementation for testing
|
||||
class TestSearcher(BaseSearcher):
|
||||
def search(self, query_vectors, top_k, complexity, beam_width=1, **kwargs):
|
||||
def search(
|
||||
self,
|
||||
query,
|
||||
top_k,
|
||||
complexity=64,
|
||||
beam_width=1,
|
||||
prune_ratio=0.0,
|
||||
recompute_embeddings=False,
|
||||
pruning_strategy="global",
|
||||
zmq_port=None,
|
||||
**kwargs,
|
||||
):
|
||||
return {"labels": [], "distances": []}
|
||||
|
||||
searcher = object.__new__(TestSearcher)
|
||||
@@ -625,7 +636,18 @@ class TestQueryTemplateApplicationInComputeEmbedding:
|
||||
|
||||
# Create a concrete implementation for testing
|
||||
class TestSearcher(BaseSearcher):
|
||||
def search(self, query_vectors, top_k, complexity, beam_width=1, **kwargs):
|
||||
def search(
|
||||
self,
|
||||
query,
|
||||
top_k,
|
||||
complexity=64,
|
||||
beam_width=1,
|
||||
prune_ratio=0.0,
|
||||
recompute_embeddings=False,
|
||||
pruning_strategy="global",
|
||||
zmq_port=None,
|
||||
**kwargs,
|
||||
):
|
||||
return {"labels": [], "distances": []}
|
||||
|
||||
searcher = object.__new__(TestSearcher)
|
||||
@@ -671,7 +693,18 @@ class TestQueryTemplateApplicationInComputeEmbedding:
|
||||
from leann.searcher_base import BaseSearcher
|
||||
|
||||
class TestSearcher(BaseSearcher):
|
||||
def search(self, query_vectors, top_k, complexity, beam_width=1, **kwargs):
|
||||
def search(
|
||||
self,
|
||||
query,
|
||||
top_k,
|
||||
complexity=64,
|
||||
beam_width=1,
|
||||
prune_ratio=0.0,
|
||||
recompute_embeddings=False,
|
||||
pruning_strategy="global",
|
||||
zmq_port=None,
|
||||
**kwargs,
|
||||
):
|
||||
return {"labels": [], "distances": []}
|
||||
|
||||
searcher = object.__new__(TestSearcher)
|
||||
@@ -710,7 +743,18 @@ class TestQueryTemplateApplicationInComputeEmbedding:
|
||||
from leann.searcher_base import BaseSearcher
|
||||
|
||||
class TestSearcher(BaseSearcher):
|
||||
def search(self, query_vectors, top_k, complexity, beam_width=1, **kwargs):
|
||||
def search(
|
||||
self,
|
||||
query,
|
||||
top_k,
|
||||
complexity=64,
|
||||
beam_width=1,
|
||||
prune_ratio=0.0,
|
||||
recompute_embeddings=False,
|
||||
pruning_strategy="global",
|
||||
zmq_port=None,
|
||||
**kwargs,
|
||||
):
|
||||
return {"labels": [], "distances": []}
|
||||
|
||||
searcher = object.__new__(TestSearcher)
|
||||
@@ -774,7 +818,18 @@ class TestQueryTemplateApplicationInComputeEmbedding:
|
||||
from leann.searcher_base import BaseSearcher
|
||||
|
||||
class TestSearcher(BaseSearcher):
|
||||
def search(self, query_vectors, top_k, complexity, beam_width=1, **kwargs):
|
||||
def search(
|
||||
self,
|
||||
query,
|
||||
top_k,
|
||||
complexity=64,
|
||||
beam_width=1,
|
||||
prune_ratio=0.0,
|
||||
recompute_embeddings=False,
|
||||
pruning_strategy="global",
|
||||
zmq_port=None,
|
||||
**kwargs,
|
||||
):
|
||||
return {"labels": [], "distances": []}
|
||||
|
||||
searcher = object.__new__(TestSearcher)
|
||||
|
||||
Reference in New Issue
Block a user