fix: Improve OpenAI embeddings handling in HNSW backend
This commit is contained in:
@@ -124,7 +124,9 @@ class HNSWSearcher(BaseSearcher):
|
|||||||
)
|
)
|
||||||
from . import faiss # type: ignore
|
from . import faiss # type: ignore
|
||||||
|
|
||||||
self.distance_metric = self.meta.get("distance_metric", "mips").lower()
|
self.distance_metric = (
|
||||||
|
self.meta.get("backend_kwargs", {}).get("distance_metric", "mips").lower()
|
||||||
|
)
|
||||||
metric_enum = get_metric_map().get(self.distance_metric)
|
metric_enum = get_metric_map().get(self.distance_metric)
|
||||||
if metric_enum is None:
|
if metric_enum is None:
|
||||||
raise ValueError(f"Unsupported distance_metric '{self.distance_metric}'.")
|
raise ValueError(f"Unsupported distance_metric '{self.distance_metric}'.")
|
||||||
@@ -200,6 +202,16 @@ class HNSWSearcher(BaseSearcher):
|
|||||||
params.efSearch = complexity
|
params.efSearch = complexity
|
||||||
params.beam_size = beam_width
|
params.beam_size = beam_width
|
||||||
|
|
||||||
|
# For OpenAI embeddings with cosine distance, disable relative distance check
|
||||||
|
# This prevents early termination when all scores are in a narrow range
|
||||||
|
embedding_model = self.meta.get("embedding_model", "").lower()
|
||||||
|
if self.distance_metric == "cosine" and any(
|
||||||
|
openai_model in embedding_model for openai_model in ["text-embedding", "openai"]
|
||||||
|
):
|
||||||
|
params.check_relative_distance = False
|
||||||
|
else:
|
||||||
|
params.check_relative_distance = True
|
||||||
|
|
||||||
# PQ pruning: direct mapping to HNSW's pq_pruning_ratio
|
# PQ pruning: direct mapping to HNSW's pq_pruning_ratio
|
||||||
params.pq_pruning_ratio = prune_ratio
|
params.pq_pruning_ratio = prune_ratio
|
||||||
|
|
||||||
|
|||||||
@@ -293,6 +293,8 @@ class EmbeddingServerManager:
|
|||||||
command.extend(["--passages-file", str(passages_file)])
|
command.extend(["--passages-file", str(passages_file)])
|
||||||
if embedding_mode != "sentence-transformers":
|
if embedding_mode != "sentence-transformers":
|
||||||
command.extend(["--embedding-mode", embedding_mode])
|
command.extend(["--embedding-mode", embedding_mode])
|
||||||
|
if kwargs.get("distance_metric"):
|
||||||
|
command.extend(["--distance-metric", kwargs["distance_metric"]])
|
||||||
|
|
||||||
return command
|
return command
|
||||||
|
|
||||||
|
|||||||
@@ -63,12 +63,19 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
|||||||
if not self.embedding_model:
|
if not self.embedding_model:
|
||||||
raise ValueError("Cannot use recompute mode without 'embedding_model' in meta.json.")
|
raise ValueError("Cannot use recompute mode without 'embedding_model' in meta.json.")
|
||||||
|
|
||||||
|
# Get distance_metric from meta if not provided in kwargs
|
||||||
|
distance_metric = (
|
||||||
|
kwargs.get("distance_metric")
|
||||||
|
or self.meta.get("backend_kwargs", {}).get("distance_metric")
|
||||||
|
or "mips"
|
||||||
|
)
|
||||||
|
|
||||||
server_started, actual_port = self.embedding_server_manager.start_server(
|
server_started, actual_port = self.embedding_server_manager.start_server(
|
||||||
port=port,
|
port=port,
|
||||||
model_name=self.embedding_model,
|
model_name=self.embedding_model,
|
||||||
embedding_mode=self.embedding_mode,
|
embedding_mode=self.embedding_mode,
|
||||||
passages_file=passages_source_file,
|
passages_file=passages_source_file,
|
||||||
distance_metric=kwargs.get("distance_metric"),
|
distance_metric=distance_metric,
|
||||||
enable_warmup=kwargs.get("enable_warmup", False),
|
enable_warmup=kwargs.get("enable_warmup", False),
|
||||||
)
|
)
|
||||||
if not server_started:
|
if not server_started:
|
||||||
|
|||||||
Reference in New Issue
Block a user