Initial commit
This commit is contained in:
81
examples/simple_demo.py
Normal file
81
examples/simple_demo.py
Normal file
@@ -0,0 +1,81 @@
|
||||
"""
|
||||
Simple demo showing basic leann usage
|
||||
Run: uv run python examples/simple_demo.py
|
||||
"""
|
||||
|
||||
from leann import LeannBuilder, LeannSearcher, LeannChat
|
||||
|
||||
|
||||
def main():
|
||||
print("=== Leann Simple Demo ===")
|
||||
print()
|
||||
|
||||
# Sample knowledge base
|
||||
chunks = [
|
||||
"Machine learning is a subset of artificial intelligence that enables computers to learn without being explicitly programmed.",
|
||||
"Deep learning uses neural networks with multiple layers to process data and make decisions.",
|
||||
"Natural language processing helps computers understand and generate human language.",
|
||||
"Computer vision enables machines to interpret and understand visual information from images and videos.",
|
||||
"Reinforcement learning teaches agents to make decisions by receiving rewards or penalties for their actions.",
|
||||
"Data science combines statistics, programming, and domain expertise to extract insights from data.",
|
||||
"Big data refers to extremely large datasets that require special tools and techniques to process.",
|
||||
"Cloud computing provides on-demand access to computing resources over the internet.",
|
||||
]
|
||||
|
||||
print("1. Building index (no embeddings stored)...")
|
||||
builder = LeannBuilder(
|
||||
embedding_model="sentence-transformers/all-mpnet-base-v2",
|
||||
prune_ratio=0.7, # Keep 30% of connections
|
||||
)
|
||||
builder.add_chunks(chunks)
|
||||
builder.build_index("demo_knowledge.leann")
|
||||
print()
|
||||
|
||||
print("2. Searching with real-time embeddings...")
|
||||
searcher = LeannSearcher("demo_knowledge.leann")
|
||||
|
||||
queries = [
|
||||
"What is machine learning?",
|
||||
"How does neural network work?",
|
||||
"Tell me about data processing",
|
||||
]
|
||||
|
||||
for query in queries:
|
||||
print(f"Query: {query}")
|
||||
results = searcher.search(query, top_k=2)
|
||||
|
||||
for i, result in enumerate(results, 1):
|
||||
print(f" {i}. Score: {result.score:.3f}")
|
||||
print(f" Text: {result.text[:100]}...")
|
||||
print()
|
||||
|
||||
print("3. Memory stats:")
|
||||
stats = searcher.get_memory_stats()
|
||||
print(f" Cache size: {stats.embedding_cache_size}")
|
||||
print(f" Cache memory: {stats.embedding_cache_memory_mb:.1f} MB")
|
||||
print(f" Total chunks: {stats.total_chunks}")
|
||||
print()
|
||||
|
||||
print("4. Interactive chat demo:")
|
||||
print(" (Note: Requires OpenAI API key for real responses)")
|
||||
|
||||
chat = LeannChat("demo_knowledge.leann")
|
||||
|
||||
# Demo questions
|
||||
demo_questions: list[str] = [
|
||||
"What is the difference between machine learning and deep learning?",
|
||||
"How is data science related to big data?",
|
||||
]
|
||||
|
||||
for question in demo_questions:
|
||||
print(f" Q: {question}")
|
||||
response = chat.ask(question)
|
||||
print(f" A: {response}")
|
||||
print()
|
||||
|
||||
print("Demo completed! Try running:")
|
||||
print(" uv run python examples/document_search.py")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user