Initial commit

This commit is contained in:
yichuan520030910320
2025-06-30 09:05:05 +00:00
commit 46f6cc100b
1231 changed files with 278432 additions and 0 deletions

View File

@@ -0,0 +1,2 @@
DisableFormat: true
SortIncludes: false

View File

@@ -0,0 +1,330 @@
/**
* MIT License
*
* Copyright (c) 2017 Tessil
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_ROBIN_GROWTH_POLICY_H
#define TSL_ROBIN_GROWTH_POLICY_H
#include <algorithm>
#include <array>
#include <climits>
#include <cmath>
#include <cstddef>
#include <iterator>
#include <limits>
#include <ratio>
#include <stdexcept>
#ifndef tsl_assert
# ifdef TSL_DEBUG
# define tsl_assert(expr) assert(expr)
# else
# define tsl_assert(expr) (static_cast<void>(0))
# endif
#endif
/**
* If exceptions are enabled, throw the exception passed in parameter, otherwise call std::terminate.
*/
#ifndef TSL_THROW_OR_TERMINATE
# if (defined(__cpp_exceptions) || defined(__EXCEPTIONS) || (defined (_MSC_VER) && defined (_CPPUNWIND))) && !defined(TSL_NO_EXCEPTIONS)
# define TSL_THROW_OR_TERMINATE(ex, msg) throw ex(msg)
# else
# ifdef NDEBUG
# define TSL_THROW_OR_TERMINATE(ex, msg) std::terminate()
# else
# include <cstdio>
# define TSL_THROW_OR_TERMINATE(ex, msg) do { std::fprintf(stderr, msg); std::terminate(); } while(0)
# endif
# endif
#endif
#ifndef TSL_LIKELY
# if defined(__GNUC__) || defined(__clang__)
# define TSL_LIKELY(exp) (__builtin_expect(!!(exp), true))
# else
# define TSL_LIKELY(exp) (exp)
# endif
#endif
namespace tsl {
namespace rh {
/**
* Grow the hash table by a factor of GrowthFactor keeping the bucket count to a power of two. It allows
* the table to use a mask operation instead of a modulo operation to map a hash to a bucket.
*
* GrowthFactor must be a power of two >= 2.
*/
template<std::size_t GrowthFactor>
class power_of_two_growth_policy {
public:
/**
* Called on the hash table creation and on rehash. The number of buckets for the table is passed in parameter.
* This number is a minimum, the policy may update this value with a higher value if needed (but not lower).
*
* If 0 is given, min_bucket_count_in_out must still be 0 after the policy creation and
* bucket_for_hash must always return 0 in this case.
*/
explicit power_of_two_growth_policy(std::size_t& min_bucket_count_in_out) {
if(min_bucket_count_in_out > max_bucket_count()) {
TSL_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maxmimum size.");
}
if(min_bucket_count_in_out > 0) {
min_bucket_count_in_out = round_up_to_power_of_two(min_bucket_count_in_out);
m_mask = min_bucket_count_in_out - 1;
}
else {
m_mask = 0;
}
}
/**
* Return the bucket [0, bucket_count()) to which the hash belongs.
* If bucket_count() is 0, it must always return 0.
*/
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
return hash & m_mask;
}
/**
* Return the number of buckets that should be used on next growth.
*/
std::size_t next_bucket_count() const {
if((m_mask + 1) > max_bucket_count() / GrowthFactor) {
TSL_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maxmimum size.");
}
return (m_mask + 1) * GrowthFactor;
}
/**
* Return the maximum number of buckets supported by the policy.
*/
std::size_t max_bucket_count() const {
// Largest power of two.
return ((std::numeric_limits<std::size_t>::max)() / 2) + 1;
}
/**
* Reset the growth policy as if it was created with a bucket count of 0.
* After a clear, the policy must always return 0 when bucket_for_hash is called.
*/
void clear() noexcept {
m_mask = 0;
}
private:
static std::size_t round_up_to_power_of_two(std::size_t value) {
if(is_power_of_two(value)) {
return value;
}
if(value == 0) {
return 1;
}
--value;
for(std::size_t i = 1; i < sizeof(std::size_t) * CHAR_BIT; i *= 2) {
value |= value >> i;
}
return value + 1;
}
static constexpr bool is_power_of_two(std::size_t value) {
return value != 0 && (value & (value - 1)) == 0;
}
protected:
static_assert(is_power_of_two(GrowthFactor) && GrowthFactor >= 2, "GrowthFactor must be a power of two >= 2.");
std::size_t m_mask;
};
/**
* Grow the hash table by GrowthFactor::num / GrowthFactor::den and use a modulo to map a hash
* to a bucket. Slower but it can be useful if you want a slower growth.
*/
template<class GrowthFactor = std::ratio<3, 2>>
class mod_growth_policy {
public:
explicit mod_growth_policy(std::size_t& min_bucket_count_in_out) {
if(min_bucket_count_in_out > max_bucket_count()) {
TSL_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maxmimum size.");
}
if(min_bucket_count_in_out > 0) {
m_mod = min_bucket_count_in_out;
}
else {
m_mod = 1;
}
}
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
return hash % m_mod;
}
std::size_t next_bucket_count() const {
if(m_mod == max_bucket_count()) {
TSL_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maxmimum size.");
}
const double next_bucket_count = std::ceil(double(m_mod) * REHASH_SIZE_MULTIPLICATION_FACTOR);
if(!std::isnormal(next_bucket_count)) {
TSL_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maxmimum size.");
}
if(next_bucket_count > double(max_bucket_count())) {
return max_bucket_count();
}
else {
return std::size_t(next_bucket_count);
}
}
std::size_t max_bucket_count() const {
return MAX_BUCKET_COUNT;
}
void clear() noexcept {
m_mod = 1;
}
private:
static constexpr double REHASH_SIZE_MULTIPLICATION_FACTOR = 1.0 * GrowthFactor::num / GrowthFactor::den;
static const std::size_t MAX_BUCKET_COUNT =
std::size_t(double(
(std::numeric_limits<std::size_t>::max)() / REHASH_SIZE_MULTIPLICATION_FACTOR
));
static_assert(REHASH_SIZE_MULTIPLICATION_FACTOR >= 1.1, "Growth factor should be >= 1.1.");
std::size_t m_mod;
};
namespace detail {
static constexpr const std::array<std::size_t, 40> PRIMES = {{
1ul, 5ul, 17ul, 29ul, 37ul, 53ul, 67ul, 79ul, 97ul, 131ul, 193ul, 257ul, 389ul, 521ul, 769ul, 1031ul,
1543ul, 2053ul, 3079ul, 6151ul, 12289ul, 24593ul, 49157ul, 98317ul, 196613ul, 393241ul, 786433ul,
1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul, 50331653ul, 100663319ul, 201326611ul,
402653189ul, 805306457ul, 1610612741ul, 3221225473ul, 4294967291ul
}};
template<unsigned int IPrime>
static constexpr std::size_t mod(std::size_t hash) { return hash % PRIMES[IPrime]; }
// MOD_PRIME[iprime](hash) returns hash % PRIMES[iprime]. This table allows for faster modulo as the
// compiler can optimize the modulo code better with a constant known at the compilation.
static constexpr const std::array<std::size_t(*)(std::size_t), 40> MOD_PRIME = {{
&mod<0>, &mod<1>, &mod<2>, &mod<3>, &mod<4>, &mod<5>, &mod<6>, &mod<7>, &mod<8>, &mod<9>, &mod<10>,
&mod<11>, &mod<12>, &mod<13>, &mod<14>, &mod<15>, &mod<16>, &mod<17>, &mod<18>, &mod<19>, &mod<20>,
&mod<21>, &mod<22>, &mod<23>, &mod<24>, &mod<25>, &mod<26>, &mod<27>, &mod<28>, &mod<29>, &mod<30>,
&mod<31>, &mod<32>, &mod<33>, &mod<34>, &mod<35>, &mod<36>, &mod<37> , &mod<38>, &mod<39>
}};
}
/**
* Grow the hash table by using prime numbers as bucket count. Slower than tsl::rh::power_of_two_growth_policy in
* general but will probably distribute the values around better in the buckets with a poor hash function.
*
* To allow the compiler to optimize the modulo operation, a lookup table is used with constant primes numbers.
*
* With a switch the code would look like:
* \code
* switch(iprime) { // iprime is the current prime of the hash table
* case 0: hash % 5ul;
* break;
* case 1: hash % 17ul;
* break;
* case 2: hash % 29ul;
* break;
* ...
* }
* \endcode
*
* Due to the constant variable in the modulo the compiler is able to optimize the operation
* by a series of multiplications, substractions and shifts.
*
* The 'hash % 5' could become something like 'hash - (hash * 0xCCCCCCCD) >> 34) * 5' in a 64 bits environement.
*/
class prime_growth_policy {
public:
explicit prime_growth_policy(std::size_t& min_bucket_count_in_out) {
auto it_prime = std::lower_bound(detail::PRIMES.begin(),
detail::PRIMES.end(), min_bucket_count_in_out);
if(it_prime == detail::PRIMES.end()) {
TSL_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maxmimum size.");
}
m_iprime = static_cast<unsigned int>(std::distance(detail::PRIMES.begin(), it_prime));
if(min_bucket_count_in_out > 0) {
min_bucket_count_in_out = *it_prime;
}
else {
min_bucket_count_in_out = 0;
}
}
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
return detail::MOD_PRIME[m_iprime](hash);
}
std::size_t next_bucket_count() const {
if(m_iprime + 1 >= detail::PRIMES.size()) {
TSL_THROW_OR_TERMINATE(std::length_error, "The hash table exceeds its maxmimum size.");
}
return detail::PRIMES[m_iprime + 1];
}
std::size_t max_bucket_count() const {
return detail::PRIMES.back();
}
void clear() noexcept {
m_iprime = 0;
}
private:
unsigned int m_iprime;
static_assert((std::numeric_limits<decltype(m_iprime)>::max)() >= detail::PRIMES.size(),
"The type of m_iprime is not big enough.");
};
}
}
#endif

View File

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,668 @@
/**
* MIT License
*
* Copyright (c) 2017 Tessil
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_ROBIN_MAP_H
#define TSL_ROBIN_MAP_H
#include <cstddef>
#include <functional>
#include <initializer_list>
#include <memory>
#include <type_traits>
#include <utility>
#include "robin_hash.h"
namespace tsl {
/**
* Implementation of a hash map using open-adressing and the robin hood hashing algorithm with backward shift deletion.
*
* For operations modifying the hash map (insert, erase, rehash, ...), the strong exception guarantee
* is only guaranteed when the expression `std::is_nothrow_swappable<std::pair<Key, T>>::value &&
* std::is_nothrow_move_constructible<std::pair<Key, T>>::value` is true, otherwise if an exception
* is thrown during the swap or the move, the hash map may end up in a undefined state. Per the standard
* a `Key` or `T` with a noexcept copy constructor and no move constructor also satisfies the
* `std::is_nothrow_move_constructible<std::pair<Key, T>>::value` criterion (and will thus guarantee the
* strong exception for the map).
*
* When `StoreHash` is true, 32 bits of the hash are stored alongside the values. It can improve
* the performance during lookups if the `KeyEqual` function takes time (if it engenders a cache-miss for example)
* as we then compare the stored hashes before comparing the keys. When `tsl::rh::power_of_two_growth_policy` is used
* as `GrowthPolicy`, it may also speed-up the rehash process as we can avoid to recalculate the hash.
* When it is detected that storing the hash will not incur any memory penality due to alignement (i.e.
* `sizeof(tsl::detail_robin_hash::bucket_entry<ValueType, true>) ==
* sizeof(tsl::detail_robin_hash::bucket_entry<ValueType, false>)`) and `tsl::rh::power_of_two_growth_policy` is
* used, the hash will be stored even if `StoreHash` is false so that we can speed-up the rehash (but it will
* not be used on lookups unless `StoreHash` is true).
*
* `GrowthPolicy` defines how the map grows and consequently how a hash value is mapped to a bucket.
* By default the map uses `tsl::rh::power_of_two_growth_policy`. This policy keeps the number of buckets
* to a power of two and uses a mask to map the hash to a bucket instead of the slow modulo.
* Other growth policies are available and you may define your own growth policy,
* check `tsl::rh::power_of_two_growth_policy` for the interface.
*
* If the destructor of `Key` or `T` throws an exception, the behaviour of the class is undefined.
*
* Iterators invalidation:
* - clear, operator=, reserve, rehash: always invalidate the iterators.
* - insert, emplace, emplace_hint, operator[]: if there is an effective insert, invalidate the iterators.
* - erase: always invalidate the iterators.
*/
template<class Key,
class T,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<std::pair<Key, T>>,
bool StoreHash = false,
class GrowthPolicy = tsl::rh::power_of_two_growth_policy<2>>
class robin_map {
private:
template<typename U>
using has_is_transparent = tsl::detail_robin_hash::has_is_transparent<U>;
class KeySelect {
public:
using key_type = Key;
const key_type& operator()(const std::pair<Key, T>& key_value) const noexcept {
return key_value.first;
}
key_type& operator()(std::pair<Key, T>& key_value) noexcept {
return key_value.first;
}
};
class ValueSelect {
public:
using value_type = T;
const value_type& operator()(const std::pair<Key, T>& key_value) const noexcept {
return key_value.second;
}
value_type& operator()(std::pair<Key, T>& key_value) noexcept {
return key_value.second;
}
};
using ht = detail_robin_hash::robin_hash<std::pair<Key, T>, KeySelect, ValueSelect,
Hash, KeyEqual, Allocator, StoreHash, GrowthPolicy>;
public:
using key_type = typename ht::key_type;
using mapped_type = T;
using value_type = typename ht::value_type;
using size_type = typename ht::size_type;
using difference_type = typename ht::difference_type;
using hasher = typename ht::hasher;
using key_equal = typename ht::key_equal;
using allocator_type = typename ht::allocator_type;
using reference = typename ht::reference;
using const_reference = typename ht::const_reference;
using pointer = typename ht::pointer;
using const_pointer = typename ht::const_pointer;
using iterator = typename ht::iterator;
using const_iterator = typename ht::const_iterator;
public:
/*
* Constructors
*/
robin_map(): robin_map(ht::DEFAULT_INIT_BUCKETS_SIZE) {
}
explicit robin_map(size_type bucket_count,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()):
m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR)
{
}
robin_map(size_type bucket_count,
const Allocator& alloc): robin_map(bucket_count, Hash(), KeyEqual(), alloc)
{
}
robin_map(size_type bucket_count,
const Hash& hash,
const Allocator& alloc): robin_map(bucket_count, hash, KeyEqual(), alloc)
{
}
explicit robin_map(const Allocator& alloc): robin_map(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
}
template<class InputIt>
robin_map(InputIt first, InputIt last,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()): robin_map(bucket_count, hash, equal, alloc)
{
insert(first, last);
}
template<class InputIt>
robin_map(InputIt first, InputIt last,
size_type bucket_count,
const Allocator& alloc): robin_map(first, last, bucket_count, Hash(), KeyEqual(), alloc)
{
}
template<class InputIt>
robin_map(InputIt first, InputIt last,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc): robin_map(first, last, bucket_count, hash, KeyEqual(), alloc)
{
}
robin_map(std::initializer_list<value_type> init,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()):
robin_map(init.begin(), init.end(), bucket_count, hash, equal, alloc)
{
}
robin_map(std::initializer_list<value_type> init,
size_type bucket_count,
const Allocator& alloc):
robin_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
{
}
robin_map(std::initializer_list<value_type> init,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc):
robin_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
{
}
robin_map& operator=(std::initializer_list<value_type> ilist) {
m_ht.clear();
m_ht.reserve(ilist.size());
m_ht.insert(ilist.begin(), ilist.end());
return *this;
}
allocator_type get_allocator() const { return m_ht.get_allocator(); }
/*
* Iterators
*/
iterator begin() noexcept { return m_ht.begin(); }
const_iterator begin() const noexcept { return m_ht.begin(); }
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
iterator end() noexcept { return m_ht.end(); }
const_iterator end() const noexcept { return m_ht.end(); }
const_iterator cend() const noexcept { return m_ht.cend(); }
/*
* Capacity
*/
bool empty() const noexcept { return m_ht.empty(); }
size_type size() const noexcept { return m_ht.size(); }
size_type max_size() const noexcept { return m_ht.max_size(); }
/*
* Modifiers
*/
void clear() noexcept { m_ht.clear(); }
std::pair<iterator, bool> insert(const value_type& value) {
return m_ht.insert(value);
}
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
std::pair<iterator, bool> insert(P&& value) {
return m_ht.emplace(std::forward<P>(value));
}
std::pair<iterator, bool> insert(value_type&& value) {
return m_ht.insert(std::move(value));
}
iterator insert(const_iterator hint, const value_type& value) {
return m_ht.insert(hint, value);
}
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
iterator insert(const_iterator hint, P&& value) {
return m_ht.emplace_hint(hint, std::forward<P>(value));
}
iterator insert(const_iterator hint, value_type&& value) {
return m_ht.insert(hint, std::move(value));
}
template<class InputIt>
void insert(InputIt first, InputIt last) {
m_ht.insert(first, last);
}
void insert(std::initializer_list<value_type> ilist) {
m_ht.insert(ilist.begin(), ilist.end());
}
template<class M>
std::pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj) {
return m_ht.insert_or_assign(k, std::forward<M>(obj));
}
template<class M>
std::pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj) {
return m_ht.insert_or_assign(std::move(k), std::forward<M>(obj));
}
template<class M>
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj) {
return m_ht.insert_or_assign(hint, k, std::forward<M>(obj));
}
template<class M>
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj) {
return m_ht.insert_or_assign(hint, std::move(k), std::forward<M>(obj));
}
/**
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
* The method is equivalent to insert(value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
std::pair<iterator, bool> emplace(Args&&... args) {
return m_ht.emplace(std::forward<Args>(args)...);
}
/**
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
* The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args) {
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
}
template<class... Args>
std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args) {
return m_ht.try_emplace(k, std::forward<Args>(args)...);
}
template<class... Args>
std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args) {
return m_ht.try_emplace(std::move(k), std::forward<Args>(args)...);
}
template<class... Args>
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args) {
return m_ht.try_emplace(hint, k, std::forward<Args>(args)...);
}
template<class... Args>
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args) {
return m_ht.try_emplace(hint, std::move(k), std::forward<Args>(args)...);
}
iterator erase(iterator pos) { return m_ht.erase(pos); }
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
size_type erase(const key_type& key) { return m_ht.erase(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
size_type erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key) { return m_ht.erase(key); }
/**
* @copydoc erase(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
void swap(robin_map& other) { other.m_ht.swap(m_ht); }
/*
* Lookup
*/
T& at(const Key& key) { return m_ht.at(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
T& at(const Key& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
const T& at(const Key& key) const { return m_ht.at(key); }
/**
* @copydoc at(const Key& key, std::size_t precalculated_hash)
*/
const T& at(const Key& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
T& at(const K& key) { return m_ht.at(key); }
/**
* @copydoc at(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
T& at(const K& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
/**
* @copydoc at(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const T& at(const K& key) const { return m_ht.at(key); }
/**
* @copydoc at(const K& key, std::size_t precalculated_hash)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const T& at(const K& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
T& operator[](const Key& key) { return m_ht[key]; }
T& operator[](Key&& key) { return m_ht[std::move(key)]; }
size_type count(const Key& key) const { return m_ht.count(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
size_type count(const Key& key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key) const { return m_ht.count(key); }
/**
* @copydoc count(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
iterator find(const Key& key) { return m_ht.find(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
const_iterator find(const Key& key) const { return m_ht.find(key); }
/**
* @copydoc find(const Key& key, std::size_t precalculated_hash)
*/
const_iterator find(const Key& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key) { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
/**
* @copydoc find(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key) const { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* @copydoc equal_range(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/*
* Bucket interface
*/
size_type bucket_count() const { return m_ht.bucket_count(); }
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
/*
* Hash policy
*/
float load_factor() const { return m_ht.load_factor(); }
float max_load_factor() const { return m_ht.max_load_factor(); }
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
void rehash(size_type count) { m_ht.rehash(count); }
void reserve(size_type count) { m_ht.reserve(count); }
/*
* Observers
*/
hasher hash_function() const { return m_ht.hash_function(); }
key_equal key_eq() const { return m_ht.key_eq(); }
/*
* Other
*/
/**
* Convert a const_iterator to an iterator.
*/
iterator mutable_iterator(const_iterator pos) {
return m_ht.mutable_iterator(pos);
}
friend bool operator==(const robin_map& lhs, const robin_map& rhs) {
if(lhs.size() != rhs.size()) {
return false;
}
for(const auto& element_lhs: lhs) {
const auto it_element_rhs = rhs.find(element_lhs.first);
if(it_element_rhs == rhs.cend() || element_lhs.second != it_element_rhs->second) {
return false;
}
}
return true;
}
friend bool operator!=(const robin_map& lhs, const robin_map& rhs) {
return !operator==(lhs, rhs);
}
friend void swap(robin_map& lhs, robin_map& rhs) {
lhs.swap(rhs);
}
private:
ht m_ht;
};
/**
* Same as `tsl::robin_map<Key, T, Hash, KeyEqual, Allocator, StoreHash, tsl::rh::prime_growth_policy>`.
*/
template<class Key,
class T,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<std::pair<Key, T>>,
bool StoreHash = false>
using robin_pg_map = robin_map<Key, T, Hash, KeyEqual, Allocator, StoreHash, tsl::rh::prime_growth_policy>;
} // end namespace tsl
#endif

View File

@@ -0,0 +1,535 @@
/**
* MIT License
*
* Copyright (c) 2017 Tessil
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_ROBIN_SET_H
#define TSL_ROBIN_SET_H
#include <cstddef>
#include <functional>
#include <initializer_list>
#include <memory>
#include <type_traits>
#include <utility>
#include "robin_hash.h"
namespace tsl {
/**
* Implementation of a hash set using open-adressing and the robin hood hashing algorithm with backward shift deletion.
*
* For operations modifying the hash set (insert, erase, rehash, ...), the strong exception guarantee
* is only guaranteed when the expression `std::is_nothrow_swappable<Key>::value &&
* std::is_nothrow_move_constructible<Key>::value` is true, otherwise if an exception
* is thrown during the swap or the move, the hash set may end up in a undefined state. Per the standard
* a `Key` with a noexcept copy constructor and no move constructor also satisfies the
* `std::is_nothrow_move_constructible<Key>::value` criterion (and will thus guarantee the
* strong exception for the set).
*
* When `StoreHash` is true, 32 bits of the hash are stored alongside the values. It can improve
* the performance during lookups if the `KeyEqual` function takes time (or engenders a cache-miss for example)
* as we then compare the stored hashes before comparing the keys. When `tsl::rh::power_of_two_growth_policy` is used
* as `GrowthPolicy`, it may also speed-up the rehash process as we can avoid to recalculate the hash.
* When it is detected that storing the hash will not incur any memory penality due to alignement (i.e.
* `sizeof(tsl::detail_robin_hash::bucket_entry<ValueType, true>) ==
* sizeof(tsl::detail_robin_hash::bucket_entry<ValueType, false>)`) and `tsl::rh::power_of_two_growth_policy` is
* used, the hash will be stored even if `StoreHash` is false so that we can speed-up the rehash (but it will
* not be used on lookups unless `StoreHash` is true).
*
* `GrowthPolicy` defines how the set grows and consequently how a hash value is mapped to a bucket.
* By default the set uses `tsl::rh::power_of_two_growth_policy`. This policy keeps the number of buckets
* to a power of two and uses a mask to set the hash to a bucket instead of the slow modulo.
* Other growth policies are available and you may define your own growth policy,
* check `tsl::rh::power_of_two_growth_policy` for the interface.
*
* If the destructor of `Key` throws an exception, the behaviour of the class is undefined.
*
* Iterators invalidation:
* - clear, operator=, reserve, rehash: always invalidate the iterators.
* - insert, emplace, emplace_hint, operator[]: if there is an effective insert, invalidate the iterators.
* - erase: always invalidate the iterators.
*/
template<class Key,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<Key>,
bool StoreHash = false,
class GrowthPolicy = tsl::rh::power_of_two_growth_policy<2>>
class robin_set {
private:
template<typename U>
using has_is_transparent = tsl::detail_robin_hash::has_is_transparent<U>;
class KeySelect {
public:
using key_type = Key;
const key_type& operator()(const Key& key) const noexcept {
return key;
}
key_type& operator()(Key& key) noexcept {
return key;
}
};
using ht = detail_robin_hash::robin_hash<Key, KeySelect, void,
Hash, KeyEqual, Allocator, StoreHash, GrowthPolicy>;
public:
using key_type = typename ht::key_type;
using value_type = typename ht::value_type;
using size_type = typename ht::size_type;
using difference_type = typename ht::difference_type;
using hasher = typename ht::hasher;
using key_equal = typename ht::key_equal;
using allocator_type = typename ht::allocator_type;
using reference = typename ht::reference;
using const_reference = typename ht::const_reference;
using pointer = typename ht::pointer;
using const_pointer = typename ht::const_pointer;
using iterator = typename ht::iterator;
using const_iterator = typename ht::const_iterator;
/*
* Constructors
*/
robin_set(): robin_set(ht::DEFAULT_INIT_BUCKETS_SIZE) {
}
explicit robin_set(size_type bucket_count,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()):
m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR)
{
}
robin_set(size_type bucket_count,
const Allocator& alloc): robin_set(bucket_count, Hash(), KeyEqual(), alloc)
{
}
robin_set(size_type bucket_count,
const Hash& hash,
const Allocator& alloc): robin_set(bucket_count, hash, KeyEqual(), alloc)
{
}
explicit robin_set(const Allocator& alloc): robin_set(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
}
template<class InputIt>
robin_set(InputIt first, InputIt last,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()): robin_set(bucket_count, hash, equal, alloc)
{
insert(first, last);
}
template<class InputIt>
robin_set(InputIt first, InputIt last,
size_type bucket_count,
const Allocator& alloc): robin_set(first, last, bucket_count, Hash(), KeyEqual(), alloc)
{
}
template<class InputIt>
robin_set(InputIt first, InputIt last,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc): robin_set(first, last, bucket_count, hash, KeyEqual(), alloc)
{
}
robin_set(std::initializer_list<value_type> init,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()):
robin_set(init.begin(), init.end(), bucket_count, hash, equal, alloc)
{
}
robin_set(std::initializer_list<value_type> init,
size_type bucket_count,
const Allocator& alloc):
robin_set(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
{
}
robin_set(std::initializer_list<value_type> init,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc):
robin_set(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
{
}
robin_set& operator=(std::initializer_list<value_type> ilist) {
m_ht.clear();
m_ht.reserve(ilist.size());
m_ht.insert(ilist.begin(), ilist.end());
return *this;
}
allocator_type get_allocator() const { return m_ht.get_allocator(); }
/*
* Iterators
*/
iterator begin() noexcept { return m_ht.begin(); }
const_iterator begin() const noexcept { return m_ht.begin(); }
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
iterator end() noexcept { return m_ht.end(); }
const_iterator end() const noexcept { return m_ht.end(); }
const_iterator cend() const noexcept { return m_ht.cend(); }
/*
* Capacity
*/
bool empty() const noexcept { return m_ht.empty(); }
size_type size() const noexcept { return m_ht.size(); }
size_type max_size() const noexcept { return m_ht.max_size(); }
/*
* Modifiers
*/
void clear() noexcept { m_ht.clear(); }
std::pair<iterator, bool> insert(const value_type& value) {
return m_ht.insert(value);
}
std::pair<iterator, bool> insert(value_type&& value) {
return m_ht.insert(std::move(value));
}
iterator insert(const_iterator hint, const value_type& value) {
return m_ht.insert(hint, value);
}
iterator insert(const_iterator hint, value_type&& value) {
return m_ht.insert(hint, std::move(value));
}
template<class InputIt>
void insert(InputIt first, InputIt last) {
m_ht.insert(first, last);
}
void insert(std::initializer_list<value_type> ilist) {
m_ht.insert(ilist.begin(), ilist.end());
}
/**
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
* The method is equivalent to insert(value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
std::pair<iterator, bool> emplace(Args&&... args) {
return m_ht.emplace(std::forward<Args>(args)...);
}
/**
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
* The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args) {
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
}
iterator erase(iterator pos) { return m_ht.erase(pos); }
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
size_type erase(const key_type& key) { return m_ht.erase(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
size_type erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key) { return m_ht.erase(key); }
/**
* @copydoc erase(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup to the value if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
void swap(robin_set& other) { other.m_ht.swap(m_ht); }
/*
* Lookup
*/
size_type count(const Key& key) const { return m_ht.count(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
size_type count(const Key& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key) const { return m_ht.count(key); }
/**
* @copydoc count(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); }
iterator find(const Key& key) { return m_ht.find(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
const_iterator find(const Key& key) const { return m_ht.find(key); }
/**
* @copydoc find(const Key& key, std::size_t precalculated_hash)
*/
const_iterator find(const Key& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); }
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key) { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
/**
* @copydoc find(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key) const { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); }
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Usefull to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* @copydoc equal_range(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/*
* Bucket interface
*/
size_type bucket_count() const { return m_ht.bucket_count(); }
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
/*
* Hash policy
*/
float load_factor() const { return m_ht.load_factor(); }
float max_load_factor() const { return m_ht.max_load_factor(); }
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
void rehash(size_type count) { m_ht.rehash(count); }
void reserve(size_type count) { m_ht.reserve(count); }
/*
* Observers
*/
hasher hash_function() const { return m_ht.hash_function(); }
key_equal key_eq() const { return m_ht.key_eq(); }
/*
* Other
*/
/**
* Convert a const_iterator to an iterator.
*/
iterator mutable_iterator(const_iterator pos) {
return m_ht.mutable_iterator(pos);
}
friend bool operator==(const robin_set& lhs, const robin_set& rhs) {
if(lhs.size() != rhs.size()) {
return false;
}
for(const auto& element_lhs: lhs) {
const auto it_element_rhs = rhs.find(element_lhs);
if(it_element_rhs == rhs.cend()) {
return false;
}
}
return true;
}
friend bool operator!=(const robin_set& lhs, const robin_set& rhs) {
return !operator==(lhs, rhs);
}
friend void swap(robin_set& lhs, robin_set& rhs) {
lhs.swap(rhs);
}
private:
ht m_ht;
};
/**
* Same as `tsl::robin_set<Key, Hash, KeyEqual, Allocator, StoreHash, tsl::rh::prime_growth_policy>`.
*/
template<class Key,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<Key>,
bool StoreHash = false>
using robin_pg_set = robin_set<Key, Hash, KeyEqual, Allocator, StoreHash, tsl::rh::prime_growth_policy>;
} // end namespace tsl
#endif

View File

@@ -0,0 +1,301 @@
/**
* MIT License
*
* Copyright (c) 2017 Thibaut Goetghebuer-Planchon <tessil@gmx.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_SPARSE_GROWTH_POLICY_H
#define TSL_SPARSE_GROWTH_POLICY_H
#include <algorithm>
#include <array>
#include <climits>
#include <cmath>
#include <cstddef>
#include <iterator>
#include <limits>
#include <ratio>
#include <stdexcept>
namespace tsl {
namespace sh {
/**
* Grow the hash table by a factor of GrowthFactor keeping the bucket count to a
* power of two. It allows the table to use a mask operation instead of a modulo
* operation to map a hash to a bucket.
*
* GrowthFactor must be a power of two >= 2.
*/
template <std::size_t GrowthFactor>
class power_of_two_growth_policy {
public:
/**
* Called on the hash table creation and on rehash. The number of buckets for
* the table is passed in parameter. This number is a minimum, the policy may
* update this value with a higher value if needed (but not lower).
*
* If 0 is given, min_bucket_count_in_out must still be 0 after the policy
* creation and bucket_for_hash must always return 0 in this case.
*/
explicit power_of_two_growth_policy(std::size_t &min_bucket_count_in_out) {
if (min_bucket_count_in_out > max_bucket_count()) {
throw std::length_error("The hash table exceeds its maximum size.");
}
if (min_bucket_count_in_out > 0) {
min_bucket_count_in_out =
round_up_to_power_of_two(min_bucket_count_in_out);
m_mask = min_bucket_count_in_out - 1;
} else {
m_mask = 0;
}
}
/**
* Return the bucket [0, bucket_count()) to which the hash belongs.
* If bucket_count() is 0, it must always return 0.
*/
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
return hash & m_mask;
}
/**
* Return the number of buckets that should be used on next growth.
*/
std::size_t next_bucket_count() const {
if ((m_mask + 1) > max_bucket_count() / GrowthFactor) {
throw std::length_error("The hash table exceeds its maximum size.");
}
return (m_mask + 1) * GrowthFactor;
}
/**
* Return the maximum number of buckets supported by the policy.
*/
std::size_t max_bucket_count() const {
// Largest power of two.
return (std::numeric_limits<std::size_t>::max() / 2) + 1;
}
/**
* Reset the growth policy as if it was created with a bucket count of 0.
* After a clear, the policy must always return 0 when bucket_for_hash is
* called.
*/
void clear() noexcept { m_mask = 0; }
private:
static std::size_t round_up_to_power_of_two(std::size_t value) {
if (is_power_of_two(value)) {
return value;
}
if (value == 0) {
return 1;
}
--value;
for (std::size_t i = 1; i < sizeof(std::size_t) * CHAR_BIT; i *= 2) {
value |= value >> i;
}
return value + 1;
}
static constexpr bool is_power_of_two(std::size_t value) {
return value != 0 && (value & (value - 1)) == 0;
}
protected:
static_assert(is_power_of_two(GrowthFactor) && GrowthFactor >= 2,
"GrowthFactor must be a power of two >= 2.");
std::size_t m_mask;
};
/**
* Grow the hash table by GrowthFactor::num / GrowthFactor::den and use a modulo
* to map a hash to a bucket. Slower but it can be useful if you want a slower
* growth.
*/
template <class GrowthFactor = std::ratio<3, 2>>
class mod_growth_policy {
public:
explicit mod_growth_policy(std::size_t &min_bucket_count_in_out) {
if (min_bucket_count_in_out > max_bucket_count()) {
throw std::length_error("The hash table exceeds its maximum size.");
}
if (min_bucket_count_in_out > 0) {
m_mod = min_bucket_count_in_out;
} else {
m_mod = 1;
}
}
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
return hash % m_mod;
}
std::size_t next_bucket_count() const {
if (m_mod == max_bucket_count()) {
throw std::length_error("The hash table exceeds its maximum size.");
}
const double next_bucket_count =
std::ceil(double(m_mod) * REHASH_SIZE_MULTIPLICATION_FACTOR);
if (!std::isnormal(next_bucket_count)) {
throw std::length_error("The hash table exceeds its maximum size.");
}
if (next_bucket_count > double(max_bucket_count())) {
return max_bucket_count();
} else {
return std::size_t(next_bucket_count);
}
}
std::size_t max_bucket_count() const { return MAX_BUCKET_COUNT; }
void clear() noexcept { m_mod = 1; }
private:
static constexpr double REHASH_SIZE_MULTIPLICATION_FACTOR =
1.0 * GrowthFactor::num / GrowthFactor::den;
static const std::size_t MAX_BUCKET_COUNT =
std::size_t(double(std::numeric_limits<std::size_t>::max() /
REHASH_SIZE_MULTIPLICATION_FACTOR));
static_assert(REHASH_SIZE_MULTIPLICATION_FACTOR >= 1.1,
"Growth factor should be >= 1.1.");
std::size_t m_mod;
};
/**
* Grow the hash table by using prime numbers as bucket count. Slower than
* tsl::sh::power_of_two_growth_policy in general but will probably distribute
* the values around better in the buckets with a poor hash function.
*
* To allow the compiler to optimize the modulo operation, a lookup table is
* used with constant primes numbers.
*
* With a switch the code would look like:
* \code
* switch(iprime) { // iprime is the current prime of the hash table
* case 0: hash % 5ul;
* break;
* case 1: hash % 17ul;
* break;
* case 2: hash % 29ul;
* break;
* ...
* }
* \endcode
*
* Due to the constant variable in the modulo the compiler is able to optimize
* the operation by a series of multiplications, substractions and shifts.
*
* The 'hash % 5' could become something like 'hash - (hash * 0xCCCCCCCD) >> 34)
* * 5' in a 64 bits environment.
*/
class prime_growth_policy {
public:
explicit prime_growth_policy(std::size_t &min_bucket_count_in_out) {
auto it_prime = std::lower_bound(primes().begin(), primes().end(),
min_bucket_count_in_out);
if (it_prime == primes().end()) {
throw std::length_error("The hash table exceeds its maximum size.");
}
m_iprime =
static_cast<unsigned int>(std::distance(primes().begin(), it_prime));
if (min_bucket_count_in_out > 0) {
min_bucket_count_in_out = *it_prime;
} else {
min_bucket_count_in_out = 0;
}
}
std::size_t bucket_for_hash(std::size_t hash) const noexcept {
return mod_prime()[m_iprime](hash);
}
std::size_t next_bucket_count() const {
if (m_iprime + 1 >= primes().size()) {
throw std::length_error("The hash table exceeds its maximum size.");
}
return primes()[m_iprime + 1];
}
std::size_t max_bucket_count() const { return primes().back(); }
void clear() noexcept { m_iprime = 0; }
private:
static const std::array<std::size_t, 40> &primes() {
static const std::array<std::size_t, 40> PRIMES = {
{1ul, 5ul, 17ul, 29ul, 37ul,
53ul, 67ul, 79ul, 97ul, 131ul,
193ul, 257ul, 389ul, 521ul, 769ul,
1031ul, 1543ul, 2053ul, 3079ul, 6151ul,
12289ul, 24593ul, 49157ul, 98317ul, 196613ul,
393241ul, 786433ul, 1572869ul, 3145739ul, 6291469ul,
12582917ul, 25165843ul, 50331653ul, 100663319ul, 201326611ul,
402653189ul, 805306457ul, 1610612741ul, 3221225473ul, 4294967291ul}};
static_assert(
std::numeric_limits<decltype(m_iprime)>::max() >= PRIMES.size(),
"The type of m_iprime is not big enough.");
return PRIMES;
}
static const std::array<std::size_t (*)(std::size_t), 40> &mod_prime() {
// MOD_PRIME[iprime](hash) returns hash % PRIMES[iprime]. This table allows
// for faster modulo as the compiler can optimize the modulo code better
// with a constant known at the compilation.
static const std::array<std::size_t (*)(std::size_t), 40> MOD_PRIME = {
{&mod<0>, &mod<1>, &mod<2>, &mod<3>, &mod<4>, &mod<5>, &mod<6>,
&mod<7>, &mod<8>, &mod<9>, &mod<10>, &mod<11>, &mod<12>, &mod<13>,
&mod<14>, &mod<15>, &mod<16>, &mod<17>, &mod<18>, &mod<19>, &mod<20>,
&mod<21>, &mod<22>, &mod<23>, &mod<24>, &mod<25>, &mod<26>, &mod<27>,
&mod<28>, &mod<29>, &mod<30>, &mod<31>, &mod<32>, &mod<33>, &mod<34>,
&mod<35>, &mod<36>, &mod<37>, &mod<38>, &mod<39>}};
return MOD_PRIME;
}
template <unsigned int IPrime>
static std::size_t mod(std::size_t hash) {
return hash % primes()[IPrime];
}
private:
unsigned int m_iprime;
};
} // namespace sh
} // namespace tsl
#endif

View File

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,800 @@
/**
* MIT License
*
* Copyright (c) 2017 Thibaut Goetghebuer-Planchon <tessil@gmx.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_SPARSE_MAP_H
#define TSL_SPARSE_MAP_H
#include <cstddef>
#include <functional>
#include <initializer_list>
#include <memory>
#include <type_traits>
#include <utility>
#include "sparse_hash.h"
namespace tsl {
/**
* Implementation of a sparse hash map using open-addressing with quadratic
* probing. The goal on the hash map is to be the most memory efficient
* possible, even at low load factor, while keeping reasonable performances.
*
* `GrowthPolicy` defines how the map grows and consequently how a hash value is
* mapped to a bucket. By default the map uses
* `tsl::sh::power_of_two_growth_policy`. This policy keeps the number of
* buckets to a power of two and uses a mask to map the hash to a bucket instead
* of the slow modulo. Other growth policies are available and you may define
* your own growth policy, check `tsl::sh::power_of_two_growth_policy` for the
* interface.
*
* `ExceptionSafety` defines the exception guarantee provided by the class. By
* default only the basic exception safety is guaranteed which mean that all
* resources used by the hash map will be freed (no memory leaks) but the hash
* map may end-up in an undefined state if an exception is thrown (undefined
* here means that some elements may be missing). This can ONLY happen on rehash
* (either on insert or if `rehash` is called explicitly) and will occur if the
* Allocator can't allocate memory (`std::bad_alloc`) or if the copy constructor
* (when a nothrow move constructor is not available) throws an exception. This
* can be avoided by calling `reserve` beforehand. This basic guarantee is
* similar to the one of `google::sparse_hash_map` and `spp::sparse_hash_map`.
* It is possible to ask for the strong exception guarantee with
* `tsl::sh::exception_safety::strong`, the drawback is that the map will be
* slower on rehashes and will also need more memory on rehashes.
*
* `Sparsity` defines how much the hash set will compromise between insertion
* speed and memory usage. A high sparsity means less memory usage but longer
* insertion times, and vice-versa for low sparsity. The default
* `tsl::sh::sparsity::medium` sparsity offers a good compromise. It doesn't
* change the lookup speed.
*
* `Key` and `T` must be nothrow move constructible and/or copy constructible.
*
* If the destructor of `Key` or `T` throws an exception, the behaviour of the
* class is undefined.
*
* Iterators invalidation:
* - clear, operator=, reserve, rehash: always invalidate the iterators.
* - insert, emplace, emplace_hint, operator[]: if there is an effective
* insert, invalidate the iterators.
* - erase: always invalidate the iterators.
*/
template <class Key, class T, class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<std::pair<Key, T>>,
class GrowthPolicy = tsl::sh::power_of_two_growth_policy<2>,
tsl::sh::exception_safety ExceptionSafety =
tsl::sh::exception_safety::basic,
tsl::sh::sparsity Sparsity = tsl::sh::sparsity::medium>
class sparse_map {
private:
template <typename U>
using has_is_transparent = tsl::detail_sparse_hash::has_is_transparent<U>;
class KeySelect {
public:
using key_type = Key;
const key_type &operator()(
const std::pair<Key, T> &key_value) const noexcept {
return key_value.first;
}
key_type &operator()(std::pair<Key, T> &key_value) noexcept {
return key_value.first;
}
};
class ValueSelect {
public:
using value_type = T;
const value_type &operator()(
const std::pair<Key, T> &key_value) const noexcept {
return key_value.second;
}
value_type &operator()(std::pair<Key, T> &key_value) noexcept {
return key_value.second;
}
};
using ht = detail_sparse_hash::sparse_hash<
std::pair<Key, T>, KeySelect, ValueSelect, Hash, KeyEqual, Allocator,
GrowthPolicy, ExceptionSafety, Sparsity, tsl::sh::probing::quadratic>;
public:
using key_type = typename ht::key_type;
using mapped_type = T;
using value_type = typename ht::value_type;
using size_type = typename ht::size_type;
using difference_type = typename ht::difference_type;
using hasher = typename ht::hasher;
using key_equal = typename ht::key_equal;
using allocator_type = typename ht::allocator_type;
using reference = typename ht::reference;
using const_reference = typename ht::const_reference;
using pointer = typename ht::pointer;
using const_pointer = typename ht::const_pointer;
using iterator = typename ht::iterator;
using const_iterator = typename ht::const_iterator;
public:
/*
* Constructors
*/
sparse_map() : sparse_map(ht::DEFAULT_INIT_BUCKET_COUNT) {}
explicit sparse_map(size_type bucket_count, const Hash &hash = Hash(),
const KeyEqual &equal = KeyEqual(),
const Allocator &alloc = Allocator())
: m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR) {}
sparse_map(size_type bucket_count, const Allocator &alloc)
: sparse_map(bucket_count, Hash(), KeyEqual(), alloc) {}
sparse_map(size_type bucket_count, const Hash &hash, const Allocator &alloc)
: sparse_map(bucket_count, hash, KeyEqual(), alloc) {}
explicit sparse_map(const Allocator &alloc)
: sparse_map(ht::DEFAULT_INIT_BUCKET_COUNT, alloc) {}
template <class InputIt>
sparse_map(InputIt first, InputIt last,
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
const Hash &hash = Hash(), const KeyEqual &equal = KeyEqual(),
const Allocator &alloc = Allocator())
: sparse_map(bucket_count, hash, equal, alloc) {
insert(first, last);
}
template <class InputIt>
sparse_map(InputIt first, InputIt last, size_type bucket_count,
const Allocator &alloc)
: sparse_map(first, last, bucket_count, Hash(), KeyEqual(), alloc) {}
template <class InputIt>
sparse_map(InputIt first, InputIt last, size_type bucket_count,
const Hash &hash, const Allocator &alloc)
: sparse_map(first, last, bucket_count, hash, KeyEqual(), alloc) {}
sparse_map(std::initializer_list<value_type> init,
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
const Hash &hash = Hash(), const KeyEqual &equal = KeyEqual(),
const Allocator &alloc = Allocator())
: sparse_map(init.begin(), init.end(), bucket_count, hash, equal, alloc) {
}
sparse_map(std::initializer_list<value_type> init, size_type bucket_count,
const Allocator &alloc)
: sparse_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(),
alloc) {}
sparse_map(std::initializer_list<value_type> init, size_type bucket_count,
const Hash &hash, const Allocator &alloc)
: sparse_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(),
alloc) {}
sparse_map &operator=(std::initializer_list<value_type> ilist) {
m_ht.clear();
m_ht.reserve(ilist.size());
m_ht.insert(ilist.begin(), ilist.end());
return *this;
}
allocator_type get_allocator() const { return m_ht.get_allocator(); }
/*
* Iterators
*/
iterator begin() noexcept { return m_ht.begin(); }
const_iterator begin() const noexcept { return m_ht.begin(); }
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
iterator end() noexcept { return m_ht.end(); }
const_iterator end() const noexcept { return m_ht.end(); }
const_iterator cend() const noexcept { return m_ht.cend(); }
/*
* Capacity
*/
bool empty() const noexcept { return m_ht.empty(); }
size_type size() const noexcept { return m_ht.size(); }
size_type max_size() const noexcept { return m_ht.max_size(); }
/*
* Modifiers
*/
void clear() noexcept { m_ht.clear(); }
std::pair<iterator, bool> insert(const value_type &value) {
return m_ht.insert(value);
}
template <class P, typename std::enable_if<std::is_constructible<
value_type, P &&>::value>::type * = nullptr>
std::pair<iterator, bool> insert(P &&value) {
return m_ht.emplace(std::forward<P>(value));
}
std::pair<iterator, bool> insert(value_type &&value) {
return m_ht.insert(std::move(value));
}
iterator insert(const_iterator hint, const value_type &value) {
return m_ht.insert_hint(hint, value);
}
template <class P, typename std::enable_if<std::is_constructible<
value_type, P &&>::value>::type * = nullptr>
iterator insert(const_iterator hint, P &&value) {
return m_ht.emplace_hint(hint, std::forward<P>(value));
}
iterator insert(const_iterator hint, value_type &&value) {
return m_ht.insert_hint(hint, std::move(value));
}
template <class InputIt>
void insert(InputIt first, InputIt last) {
m_ht.insert(first, last);
}
void insert(std::initializer_list<value_type> ilist) {
m_ht.insert(ilist.begin(), ilist.end());
}
template <class M>
std::pair<iterator, bool> insert_or_assign(const key_type &k, M &&obj) {
return m_ht.insert_or_assign(k, std::forward<M>(obj));
}
template <class M>
std::pair<iterator, bool> insert_or_assign(key_type &&k, M &&obj) {
return m_ht.insert_or_assign(std::move(k), std::forward<M>(obj));
}
template <class M>
iterator insert_or_assign(const_iterator hint, const key_type &k, M &&obj) {
return m_ht.insert_or_assign(hint, k, std::forward<M>(obj));
}
template <class M>
iterator insert_or_assign(const_iterator hint, key_type &&k, M &&obj) {
return m_ht.insert_or_assign(hint, std::move(k), std::forward<M>(obj));
}
/**
* Due to the way elements are stored, emplace will need to move or copy the
* key-value once. The method is equivalent to
* `insert(value_type(std::forward<Args>(args)...));`.
*
* Mainly here for compatibility with the `std::unordered_map` interface.
*/
template <class... Args>
std::pair<iterator, bool> emplace(Args &&...args) {
return m_ht.emplace(std::forward<Args>(args)...);
}
/**
* Due to the way elements are stored, emplace_hint will need to move or copy
* the key-value once. The method is equivalent to `insert(hint,
* value_type(std::forward<Args>(args)...));`.
*
* Mainly here for compatibility with the `std::unordered_map` interface.
*/
template <class... Args>
iterator emplace_hint(const_iterator hint, Args &&...args) {
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
}
template <class... Args>
std::pair<iterator, bool> try_emplace(const key_type &k, Args &&...args) {
return m_ht.try_emplace(k, std::forward<Args>(args)...);
}
template <class... Args>
std::pair<iterator, bool> try_emplace(key_type &&k, Args &&...args) {
return m_ht.try_emplace(std::move(k), std::forward<Args>(args)...);
}
template <class... Args>
iterator try_emplace(const_iterator hint, const key_type &k, Args &&...args) {
return m_ht.try_emplace_hint(hint, k, std::forward<Args>(args)...);
}
template <class... Args>
iterator try_emplace(const_iterator hint, key_type &&k, Args &&...args) {
return m_ht.try_emplace_hint(hint, std::move(k),
std::forward<Args>(args)...);
}
iterator erase(iterator pos) { return m_ht.erase(pos); }
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
iterator erase(const_iterator first, const_iterator last) {
return m_ht.erase(first, last);
}
size_type erase(const key_type &key) { return m_ht.erase(key); }
/**
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
size_type erase(const key_type &key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef
* `KeyEqual::is_transparent` exists. If so, `K` must be hashable and
* comparable to `Key`.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
size_type erase(const K &key) {
return m_ht.erase(key);
}
/**
* @copydoc erase(const K& key)
*
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
size_type erase(const K &key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
void swap(sparse_map &other) { other.m_ht.swap(m_ht); }
/*
* Lookup
*/
T &at(const Key &key) { return m_ht.at(key); }
/**
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
T &at(const Key &key, std::size_t precalculated_hash) {
return m_ht.at(key, precalculated_hash);
}
const T &at(const Key &key) const { return m_ht.at(key); }
/**
* @copydoc at(const Key& key, std::size_t precalculated_hash)
*/
const T &at(const Key &key, std::size_t precalculated_hash) const {
return m_ht.at(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef
* `KeyEqual::is_transparent` exists. If so, `K` must be hashable and
* comparable to `Key`.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
T &at(const K &key) {
return m_ht.at(key);
}
/**
* @copydoc at(const K& key)
*
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
T &at(const K &key, std::size_t precalculated_hash) {
return m_ht.at(key, precalculated_hash);
}
/**
* @copydoc at(const K& key)
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
const T &at(const K &key) const {
return m_ht.at(key);
}
/**
* @copydoc at(const K& key, std::size_t precalculated_hash)
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
const T &at(const K &key, std::size_t precalculated_hash) const {
return m_ht.at(key, precalculated_hash);
}
T &operator[](const Key &key) { return m_ht[key]; }
T &operator[](Key &&key) { return m_ht[std::move(key)]; }
size_type count(const Key &key) const { return m_ht.count(key); }
/**
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
size_type count(const Key &key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef
* `KeyEqual::is_transparent` exists. If so, `K` must be hashable and
* comparable to `Key`.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
size_type count(const K &key) const {
return m_ht.count(key);
}
/**
* @copydoc count(const K& key) const
*
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
size_type count(const K &key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
iterator find(const Key &key) { return m_ht.find(key); }
/**
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
iterator find(const Key &key, std::size_t precalculated_hash) {
return m_ht.find(key, precalculated_hash);
}
const_iterator find(const Key &key) const { return m_ht.find(key); }
/**
* @copydoc find(const Key& key, std::size_t precalculated_hash)
*/
const_iterator find(const Key &key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef
* `KeyEqual::is_transparent` exists. If so, `K` must be hashable and
* comparable to `Key`.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
iterator find(const K &key) {
return m_ht.find(key);
}
/**
* @copydoc find(const K& key)
*
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
iterator find(const K &key, std::size_t precalculated_hash) {
return m_ht.find(key, precalculated_hash);
}
/**
* @copydoc find(const K& key)
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
const_iterator find(const K &key) const {
return m_ht.find(key);
}
/**
* @copydoc find(const K& key)
*
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
const_iterator find(const K &key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
bool contains(const Key &key) const { return m_ht.contains(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
bool contains(const Key &key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable
* to Key.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
bool contains(const K &key) const {
return m_ht.contains(key);
}
/**
* @copydoc contains(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
bool contains(const K &key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
std::pair<iterator, iterator> equal_range(const Key &key) {
return m_ht.equal_range(key);
}
/**
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
std::pair<iterator, iterator> equal_range(const Key &key,
std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
std::pair<const_iterator, const_iterator> equal_range(const Key &key) const {
return m_ht.equal_range(key);
}
/**
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(
const Key &key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef
* `KeyEqual::is_transparent` exists. If so, `K` must be hashable and
* comparable to `Key`.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
std::pair<iterator, iterator> equal_range(const K &key) {
return m_ht.equal_range(key);
}
/**
* @copydoc equal_range(const K& key)
*
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
std::pair<iterator, iterator> equal_range(const K &key,
std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* @copydoc equal_range(const K& key)
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K &key) const {
return m_ht.equal_range(key);
}
/**
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
std::pair<const_iterator, const_iterator> equal_range(
const K &key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/*
* Bucket interface
*/
size_type bucket_count() const { return m_ht.bucket_count(); }
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
/*
* Hash policy
*/
float load_factor() const { return m_ht.load_factor(); }
float max_load_factor() const { return m_ht.max_load_factor(); }
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
void rehash(size_type count) { m_ht.rehash(count); }
void reserve(size_type count) { m_ht.reserve(count); }
/*
* Observers
*/
hasher hash_function() const { return m_ht.hash_function(); }
key_equal key_eq() const { return m_ht.key_eq(); }
/*
* Other
*/
/**
* Convert a `const_iterator` to an `iterator`.
*/
iterator mutable_iterator(const_iterator pos) {
return m_ht.mutable_iterator(pos);
}
/**
* Serialize the map through the `serializer` parameter.
*
* The `serializer` parameter must be a function object that supports the
* following call:
* - `template<typename U> void operator()(const U& value);` where the types
* `std::uint64_t`, `float` and `std::pair<Key, T>` must be supported for U.
*
* The implementation leaves binary compatibility (endianness, IEEE 754 for
* floats, ...) of the types it serializes in the hands of the `Serializer`
* function object if compatibility is required.
*/
template <class Serializer>
void serialize(Serializer &serializer) const {
m_ht.serialize(serializer);
}
/**
* Deserialize a previously serialized map through the `deserializer`
* parameter.
*
* The `deserializer` parameter must be a function object that supports the
* following calls:
* - `template<typename U> U operator()();` where the types `std::uint64_t`,
* `float` and `std::pair<Key, T>` must be supported for U.
*
* If the deserialized hash map type is hash compatible with the serialized
* map, the deserialization process can be sped up by setting
* `hash_compatible` to true. To be hash compatible, the Hash, KeyEqual and
* GrowthPolicy must behave the same way than the ones used on the serialized
* map. The `std::size_t` must also be of the same size as the one on the
* platform used to serialize the map. If these criteria are not met, the
* behaviour is undefined with `hash_compatible` sets to true.
*
* The behaviour is undefined if the type `Key` and `T` of the `sparse_map`
* are not the same as the types used during serialization.
*
* The implementation leaves binary compatibility (endianness, IEEE 754 for
* floats, size of int, ...) of the types it deserializes in the hands of the
* `Deserializer` function object if compatibility is required.
*/
template <class Deserializer>
static sparse_map deserialize(Deserializer &deserializer,
bool hash_compatible = false) {
sparse_map map(0);
map.m_ht.deserialize(deserializer, hash_compatible);
return map;
}
friend bool operator==(const sparse_map &lhs, const sparse_map &rhs) {
if (lhs.size() != rhs.size()) {
return false;
}
for (const auto &element_lhs : lhs) {
const auto it_element_rhs = rhs.find(element_lhs.first);
if (it_element_rhs == rhs.cend() ||
element_lhs.second != it_element_rhs->second) {
return false;
}
}
return true;
}
friend bool operator!=(const sparse_map &lhs, const sparse_map &rhs) {
return !operator==(lhs, rhs);
}
friend void swap(sparse_map &lhs, sparse_map &rhs) { lhs.swap(rhs); }
private:
ht m_ht;
};
/**
* Same as `tsl::sparse_map<Key, T, Hash, KeyEqual, Allocator,
* tsl::sh::prime_growth_policy>`.
*/
template <class Key, class T, class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<std::pair<Key, T>>>
using sparse_pg_map =
sparse_map<Key, T, Hash, KeyEqual, Allocator, tsl::sh::prime_growth_policy>;
} // end namespace tsl
#endif

View File

@@ -0,0 +1,655 @@
/**
* MIT License
*
* Copyright (c) 2017 Thibaut Goetghebuer-Planchon <tessil@gmx.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_SPARSE_SET_H
#define TSL_SPARSE_SET_H
#include <cstddef>
#include <functional>
#include <initializer_list>
#include <memory>
#include <type_traits>
#include <utility>
#include "sparse_hash.h"
namespace tsl {
/**
* Implementation of a sparse hash set using open-addressing with quadratic
* probing. The goal on the hash set is to be the most memory efficient
* possible, even at low load factor, while keeping reasonable performances.
*
* `GrowthPolicy` defines how the set grows and consequently how a hash value is
* mapped to a bucket. By default the set uses
* `tsl::sh::power_of_two_growth_policy`. This policy keeps the number of
* buckets to a power of two and uses a mask to map the hash to a bucket instead
* of the slow modulo. Other growth policies are available and you may define
* your own growth policy, check `tsl::sh::power_of_two_growth_policy` for the
* interface.
*
* `ExceptionSafety` defines the exception guarantee provided by the class. By
* default only the basic exception safety is guaranteed which mean that all
* resources used by the hash set will be freed (no memory leaks) but the hash
* set may end-up in an undefined state if an exception is thrown (undefined
* here means that some elements may be missing). This can ONLY happen on rehash
* (either on insert or if `rehash` is called explicitly) and will occur if the
* Allocator can't allocate memory (`std::bad_alloc`) or if the copy constructor
* (when a nothrow move constructor is not available) throws an exception. This
* can be avoided by calling `reserve` beforehand. This basic guarantee is
* similar to the one of `google::sparse_hash_map` and `spp::sparse_hash_map`.
* It is possible to ask for the strong exception guarantee with
* `tsl::sh::exception_safety::strong`, the drawback is that the set will be
* slower on rehashes and will also need more memory on rehashes.
*
* `Sparsity` defines how much the hash set will compromise between insertion
* speed and memory usage. A high sparsity means less memory usage but longer
* insertion times, and vice-versa for low sparsity. The default
* `tsl::sh::sparsity::medium` sparsity offers a good compromise. It doesn't
* change the lookup speed.
*
* `Key` must be nothrow move constructible and/or copy constructible.
*
* If the destructor of `Key` throws an exception, the behaviour of the class is
* undefined.
*
* Iterators invalidation:
* - clear, operator=, reserve, rehash: always invalidate the iterators.
* - insert, emplace, emplace_hint: if there is an effective insert, invalidate
* the iterators.
* - erase: always invalidate the iterators.
*/
template <class Key, class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<Key>,
class GrowthPolicy = tsl::sh::power_of_two_growth_policy<2>,
tsl::sh::exception_safety ExceptionSafety =
tsl::sh::exception_safety::basic,
tsl::sh::sparsity Sparsity = tsl::sh::sparsity::medium>
class sparse_set {
private:
template <typename U>
using has_is_transparent = tsl::detail_sparse_hash::has_is_transparent<U>;
class KeySelect {
public:
using key_type = Key;
const key_type &operator()(const Key &key) const noexcept { return key; }
key_type &operator()(Key &key) noexcept { return key; }
};
using ht =
detail_sparse_hash::sparse_hash<Key, KeySelect, void, Hash, KeyEqual,
Allocator, GrowthPolicy, ExceptionSafety,
Sparsity, tsl::sh::probing::quadratic>;
public:
using key_type = typename ht::key_type;
using value_type = typename ht::value_type;
using size_type = typename ht::size_type;
using difference_type = typename ht::difference_type;
using hasher = typename ht::hasher;
using key_equal = typename ht::key_equal;
using allocator_type = typename ht::allocator_type;
using reference = typename ht::reference;
using const_reference = typename ht::const_reference;
using pointer = typename ht::pointer;
using const_pointer = typename ht::const_pointer;
using iterator = typename ht::iterator;
using const_iterator = typename ht::const_iterator;
/*
* Constructors
*/
sparse_set() : sparse_set(ht::DEFAULT_INIT_BUCKET_COUNT) {}
explicit sparse_set(size_type bucket_count, const Hash &hash = Hash(),
const KeyEqual &equal = KeyEqual(),
const Allocator &alloc = Allocator())
: m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR) {}
sparse_set(size_type bucket_count, const Allocator &alloc)
: sparse_set(bucket_count, Hash(), KeyEqual(), alloc) {}
sparse_set(size_type bucket_count, const Hash &hash, const Allocator &alloc)
: sparse_set(bucket_count, hash, KeyEqual(), alloc) {}
explicit sparse_set(const Allocator &alloc)
: sparse_set(ht::DEFAULT_INIT_BUCKET_COUNT, alloc) {}
template <class InputIt>
sparse_set(InputIt first, InputIt last,
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
const Hash &hash = Hash(), const KeyEqual &equal = KeyEqual(),
const Allocator &alloc = Allocator())
: sparse_set(bucket_count, hash, equal, alloc) {
insert(first, last);
}
template <class InputIt>
sparse_set(InputIt first, InputIt last, size_type bucket_count,
const Allocator &alloc)
: sparse_set(first, last, bucket_count, Hash(), KeyEqual(), alloc) {}
template <class InputIt>
sparse_set(InputIt first, InputIt last, size_type bucket_count,
const Hash &hash, const Allocator &alloc)
: sparse_set(first, last, bucket_count, hash, KeyEqual(), alloc) {}
sparse_set(std::initializer_list<value_type> init,
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
const Hash &hash = Hash(), const KeyEqual &equal = KeyEqual(),
const Allocator &alloc = Allocator())
: sparse_set(init.begin(), init.end(), bucket_count, hash, equal, alloc) {
}
sparse_set(std::initializer_list<value_type> init, size_type bucket_count,
const Allocator &alloc)
: sparse_set(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(),
alloc) {}
sparse_set(std::initializer_list<value_type> init, size_type bucket_count,
const Hash &hash, const Allocator &alloc)
: sparse_set(init.begin(), init.end(), bucket_count, hash, KeyEqual(),
alloc) {}
sparse_set &operator=(std::initializer_list<value_type> ilist) {
m_ht.clear();
m_ht.reserve(ilist.size());
m_ht.insert(ilist.begin(), ilist.end());
return *this;
}
allocator_type get_allocator() const { return m_ht.get_allocator(); }
/*
* Iterators
*/
iterator begin() noexcept { return m_ht.begin(); }
const_iterator begin() const noexcept { return m_ht.begin(); }
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
iterator end() noexcept { return m_ht.end(); }
const_iterator end() const noexcept { return m_ht.end(); }
const_iterator cend() const noexcept { return m_ht.cend(); }
/*
* Capacity
*/
bool empty() const noexcept { return m_ht.empty(); }
size_type size() const noexcept { return m_ht.size(); }
size_type max_size() const noexcept { return m_ht.max_size(); }
/*
* Modifiers
*/
void clear() noexcept { m_ht.clear(); }
std::pair<iterator, bool> insert(const value_type &value) {
return m_ht.insert(value);
}
std::pair<iterator, bool> insert(value_type &&value) {
return m_ht.insert(std::move(value));
}
iterator insert(const_iterator hint, const value_type &value) {
return m_ht.insert_hint(hint, value);
}
iterator insert(const_iterator hint, value_type &&value) {
return m_ht.insert_hint(hint, std::move(value));
}
template <class InputIt>
void insert(InputIt first, InputIt last) {
m_ht.insert(first, last);
}
void insert(std::initializer_list<value_type> ilist) {
m_ht.insert(ilist.begin(), ilist.end());
}
/**
* Due to the way elements are stored, emplace will need to move or copy the
* key-value once. The method is equivalent to
* `insert(value_type(std::forward<Args>(args)...));`.
*
* Mainly here for compatibility with the `std::unordered_map` interface.
*/
template <class... Args>
std::pair<iterator, bool> emplace(Args &&...args) {
return m_ht.emplace(std::forward<Args>(args)...);
}
/**
* Due to the way elements are stored, emplace_hint will need to move or copy
* the key-value once. The method is equivalent to `insert(hint,
* value_type(std::forward<Args>(args)...));`.
*
* Mainly here for compatibility with the `std::unordered_map` interface.
*/
template <class... Args>
iterator emplace_hint(const_iterator hint, Args &&...args) {
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
}
iterator erase(iterator pos) { return m_ht.erase(pos); }
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
iterator erase(const_iterator first, const_iterator last) {
return m_ht.erase(first, last);
}
size_type erase(const key_type &key) { return m_ht.erase(key); }
/**
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
size_type erase(const key_type &key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef
* `KeyEqual::is_transparent` exists. If so, `K` must be hashable and
* comparable to `Key`.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
size_type erase(const K &key) {
return m_ht.erase(key);
}
/**
* @copydoc erase(const K& key)
*
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
size_type erase(const K &key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
void swap(sparse_set &other) { other.m_ht.swap(m_ht); }
/*
* Lookup
*/
size_type count(const Key &key) const { return m_ht.count(key); }
/**
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
size_type count(const Key &key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef
* `KeyEqual::is_transparent` exists. If so, `K` must be hashable and
* comparable to `Key`.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
size_type count(const K &key) const {
return m_ht.count(key);
}
/**
* @copydoc count(const K& key) const
*
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
size_type count(const K &key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
iterator find(const Key &key) { return m_ht.find(key); }
/**
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
iterator find(const Key &key, std::size_t precalculated_hash) {
return m_ht.find(key, precalculated_hash);
}
const_iterator find(const Key &key) const { return m_ht.find(key); }
/**
* @copydoc find(const Key& key, std::size_t precalculated_hash)
*/
const_iterator find(const Key &key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef
* `KeyEqual::is_transparent` exists. If so, `K` must be hashable and
* comparable to `Key`.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
iterator find(const K &key) {
return m_ht.find(key);
}
/**
* @copydoc find(const K& key)
*
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
iterator find(const K &key, std::size_t precalculated_hash) {
return m_ht.find(key, precalculated_hash);
}
/**
* @copydoc find(const K& key)
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
const_iterator find(const K &key) const {
return m_ht.find(key);
}
/**
* @copydoc find(const K& key)
*
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
const_iterator find(const K &key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
bool contains(const Key &key) const { return m_ht.contains(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
bool contains(const Key &key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable
* to Key.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
bool contains(const K &key) const {
return m_ht.contains(key);
}
/**
* @copydoc contains(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
bool contains(const K &key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
std::pair<iterator, iterator> equal_range(const Key &key) {
return m_ht.equal_range(key);
}
/**
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
std::pair<iterator, iterator> equal_range(const Key &key,
std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
std::pair<const_iterator, const_iterator> equal_range(const Key &key) const {
return m_ht.equal_range(key);
}
/**
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(
const Key &key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef
* `KeyEqual::is_transparent` exists. If so, `K` must be hashable and
* comparable to `Key`.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
std::pair<iterator, iterator> equal_range(const K &key) {
return m_ht.equal_range(key);
}
/**
* @copydoc equal_range(const K& key)
*
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
std::pair<iterator, iterator> equal_range(const K &key,
std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* @copydoc equal_range(const K& key)
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K &key) const {
return m_ht.equal_range(key);
}
/**
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
std::pair<const_iterator, const_iterator> equal_range(
const K &key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/*
* Bucket interface
*/
size_type bucket_count() const { return m_ht.bucket_count(); }
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
/*
* Hash policy
*/
float load_factor() const { return m_ht.load_factor(); }
float max_load_factor() const { return m_ht.max_load_factor(); }
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
void rehash(size_type count) { m_ht.rehash(count); }
void reserve(size_type count) { m_ht.reserve(count); }
/*
* Observers
*/
hasher hash_function() const { return m_ht.hash_function(); }
key_equal key_eq() const { return m_ht.key_eq(); }
/*
* Other
*/
/**
* Convert a `const_iterator` to an `iterator`.
*/
iterator mutable_iterator(const_iterator pos) {
return m_ht.mutable_iterator(pos);
}
/**
* Serialize the set through the `serializer` parameter.
*
* The `serializer` parameter must be a function object that supports the
* following call:
* - `void operator()(const U& value);` where the types `std::uint64_t`,
* `float` and `Key` must be supported for U.
*
* The implementation leaves binary compatibility (endianness, IEEE 754 for
* floats, ...) of the types it serializes in the hands of the `Serializer`
* function object if compatibility is required.
*/
template <class Serializer>
void serialize(Serializer &serializer) const {
m_ht.serialize(serializer);
}
/**
* Deserialize a previously serialized set through the `deserializer`
* parameter.
*
* The `deserializer` parameter must be a function object that supports the
* following calls:
* - `template<typename U> U operator()();` where the types `std::uint64_t`,
* `float` and `Key` must be supported for U.
*
* If the deserialized hash set type is hash compatible with the serialized
* set, the deserialization process can be sped up by setting
* `hash_compatible` to true. To be hash compatible, the Hash, KeyEqual and
* GrowthPolicy must behave the same way than the ones used on the serialized
* set. The `std::size_t` must also be of the same size as the one on the
* platform used to serialize the set. If these criteria are not met, the
* behaviour is undefined with `hash_compatible` sets to true.
*
* The behaviour is undefined if the type `Key` of the `sparse_set` is not the
* same as the type used during serialization.
*
* The implementation leaves binary compatibility (endianness, IEEE 754 for
* floats, size of int, ...) of the types it deserializes in the hands of the
* `Deserializer` function object if compatibility is required.
*/
template <class Deserializer>
static sparse_set deserialize(Deserializer &deserializer,
bool hash_compatible = false) {
sparse_set set(0);
set.m_ht.deserialize(deserializer, hash_compatible);
return set;
}
friend bool operator==(const sparse_set &lhs, const sparse_set &rhs) {
if (lhs.size() != rhs.size()) {
return false;
}
for (const auto &element_lhs : lhs) {
const auto it_element_rhs = rhs.find(element_lhs);
if (it_element_rhs == rhs.cend()) {
return false;
}
}
return true;
}
friend bool operator!=(const sparse_set &lhs, const sparse_set &rhs) {
return !operator==(lhs, rhs);
}
friend void swap(sparse_set &lhs, sparse_set &rhs) { lhs.swap(rhs); }
private:
ht m_ht;
};
/**
* Same as `tsl::sparse_set<Key, Hash, KeyEqual, Allocator,
* tsl::sh::prime_growth_policy>`.
*/
template <class Key, class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<Key>>
using sparse_pg_set =
sparse_set<Key, Hash, KeyEqual, Allocator, tsl::sh::prime_growth_policy>;
} // end namespace tsl
#endif