Initial commit

This commit is contained in:
yichuan520030910320
2025-06-30 09:05:05 +00:00
commit 46f6cc100b
1231 changed files with 278432 additions and 0 deletions

View File

@@ -0,0 +1,152 @@
import diskannpy as dap
import numpy as np
import numpy.typing as npt
import fire
from contextlib import contextmanager
from time import perf_counter
from typing import Tuple
def _basic_setup(
dtype: str,
query_vectors_file: str
) -> Tuple[dap.VectorDType, npt.NDArray[dap.VectorDType]]:
_dtype = dap.valid_dtype(dtype)
vectors_to_query = dap.vectors_from_binary(query_vectors_file, dtype=_dtype)
return _dtype, vectors_to_query
def dynamic(
dtype: str,
index_vectors_file: str,
query_vectors_file: str,
build_complexity: int,
graph_degree: int,
K: int,
search_complexity: int,
num_insert_threads: int,
num_search_threads: int,
gt_file: str = "",
):
_dtype, vectors_to_query = _basic_setup(dtype, query_vectors_file)
vectors_to_index = dap.vectors_from_binary(index_vectors_file, dtype=_dtype)
npts, ndims = vectors_to_index.shape
index = dap.DynamicMemoryIndex(
"l2", _dtype, ndims, npts, build_complexity, graph_degree
)
tags = np.arange(1, npts+1, dtype=np.uintc)
timer = Timer()
with timer.time("batch insert"):
index.batch_insert(vectors_to_index, tags, num_insert_threads)
delete_tags = np.random.choice(
np.array(range(1, npts + 1, 1), dtype=np.uintc),
size=int(0.5 * npts),
replace=False
)
with timer.time("mark deletion"):
for tag in delete_tags:
index.mark_deleted(tag)
with timer.time("consolidation"):
index.consolidate_delete()
deleted_data = vectors_to_index[delete_tags - 1, :]
with timer.time("re-insertion"):
index.batch_insert(deleted_data, delete_tags, num_insert_threads)
with timer.time("batch searched"):
tags, dists = index.batch_search(vectors_to_query, K, search_complexity, num_search_threads)
# res_ids = tags - 1
# if gt_file != "":
# recall = utils.calculate_recall_from_gt_file(K, res_ids, gt_file)
# print(f"recall@{K} is {recall}")
def static(
dtype: str,
index_directory: str,
index_vectors_file: str,
query_vectors_file: str,
build_complexity: int,
graph_degree: int,
K: int,
search_complexity: int,
num_threads: int,
gt_file: str = "",
index_prefix: str = "ann"
):
_dtype, vectors_to_query = _basic_setup(dtype, query_vectors_file)
timer = Timer()
with timer.time("build static index"):
# build index
dap.build_memory_index(
data=index_vectors_file,
metric="l2",
vector_dtype=_dtype,
index_directory=index_directory,
complexity=build_complexity,
graph_degree=graph_degree,
num_threads=num_threads,
index_prefix=index_prefix,
alpha=1.2,
use_pq_build=False,
num_pq_bytes=8,
use_opq=False,
)
with timer.time("load static index"):
# ready search object
index = dap.StaticMemoryIndex(
metric="l2",
vector_dtype=_dtype,
data_path=index_vectors_file,
index_directory=index_directory,
num_threads=num_threads, # this can be different at search time if you would like
initial_search_complexity=search_complexity,
index_prefix=index_prefix
)
ids, dists = index.batch_search(vectors_to_query, K, search_complexity, num_threads)
# if gt_file != "":
# recall = utils.calculate_recall_from_gt_file(K, ids, gt_file)
# print(f"recall@{K} is {recall}")
def dynamic_clustered():
pass
def generate_clusters():
pass
class Timer:
def __init__(self):
self._start = -1
@contextmanager
def time(self, message: str):
start = perf_counter()
if self._start == -1:
self._start = start
yield
now = perf_counter()
print(f"Operation {message} completed in {(now - start):.3f}s, total: {(now - self._start):.3f}s")
if __name__ == "__main__":
fire.Fire({
"in-mem-dynamic": dynamic,
"in-mem-static": static,
"in-mem-dynamic-clustered": dynamic_clustered,
"generate-clusters": generate_clusters
}, name="cli")

View File

@@ -0,0 +1,28 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.
import argparse
import utils
if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog="cluster", description="kmeans cluster points in a file"
)
parser.add_argument("-d", "--data_type", required=True)
parser.add_argument("-i", "--indexdata_file", required=True)
parser.add_argument("-k", "--num_clusters", type=int, required=True)
args = parser.parse_args()
npts, ndims = get_bin_metadata(indexdata_file)
data = utils.bin_to_numpy(args.data_type, args.indexdata_file)
offsets, permutation = utils.cluster_and_permute(
args.data_type, npts, ndims, data, args.num_clusters
)
permuted_data = data[permutation]
utils.numpy_to_bin(permuted_data, args.indexdata_file + ".cluster")

View File

@@ -0,0 +1,161 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.
import argparse
import diskannpy
import numpy as np
import utils
def insert_and_search(
dtype_str,
indexdata_file,
querydata_file,
Lb,
graph_degree,
K,
Ls,
num_insert_threads,
num_search_threads,
gt_file,
) -> dict[str, float]:
"""
:param dtype_str:
:param indexdata_file:
:param querydata_file:
:param Lb:
:param graph_degree:
:param K:
:param Ls:
:param num_insert_threads:
:param num_search_threads:
:param gt_file:
:return: Dictionary of timings. Key is the event and value is the number of seconds the event took
"""
timer_results: dict[str, float] = {}
method_timer: utils.Timer = utils.Timer()
npts, ndims = utils.get_bin_metadata(indexdata_file)
if dtype_str == "float":
dtype = np.float32
elif dtype_str == "int8":
dtype = np.int8
elif dtype_str == "uint8":
dtype = np.uint8
else:
raise ValueError("data_type must be float, int8 or uint8")
index = diskannpy.DynamicMemoryIndex(
distance_metric="l2",
vector_dtype=dtype,
dimensions=ndims,
max_vectors=npts,
complexity=Lb,
graph_degree=graph_degree
)
queries = diskannpy.vectors_from_file(querydata_file, dtype)
data = diskannpy.vectors_from_file(indexdata_file, dtype)
tags = np.zeros(npts, dtype=np.uintc)
timer = utils.Timer()
for i in range(npts):
tags[i] = i + 1
index.batch_insert(data, tags, num_insert_threads)
compute_seconds = timer.elapsed()
print('batch_insert complete in', compute_seconds, 's')
timer_results["batch_insert_seconds"] = compute_seconds
delete_tags = np.random.choice(
np.array(range(1, npts + 1, 1), dtype=np.uintc),
size=int(0.5 * npts),
replace=False
)
timer.reset()
for tag in delete_tags:
index.mark_deleted(tag)
compute_seconds = timer.elapsed()
timer_results['mark_deletion_seconds'] = compute_seconds
print('mark deletion completed in', compute_seconds, 's')
timer.reset()
index.consolidate_delete()
compute_seconds = timer.elapsed()
print('consolidation completed in', compute_seconds, 's')
timer_results['consolidation_completed_seconds'] = compute_seconds
deleted_data = data[delete_tags - 1, :]
timer.reset()
index.batch_insert(deleted_data, delete_tags, num_insert_threads)
compute_seconds = timer.elapsed()
print('re-insertion completed in', compute_seconds, 's')
timer_results['re-insertion_seconds'] = compute_seconds
timer.reset()
tags, dists = index.batch_search(queries, K, Ls, num_search_threads)
compute_seconds = timer.elapsed()
print('Batch searched', queries.shape[0], ' queries in ', compute_seconds, 's')
timer_results['batch_searched_seconds'] = compute_seconds
res_ids = tags - 1
if gt_file != "":
timer.reset()
recall = utils.calculate_recall_from_gt_file(K, res_ids, gt_file)
print(f"recall@{K} is {recall}")
timer_results['recall_computed_seconds'] = timer.elapsed()
timer_results['total_time_seconds'] = method_timer.elapsed()
return timer_results
if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog="in-mem-dynamic",
description="Inserts points dynamically in a clustered order and search from vectors in a file.",
)
parser.add_argument("-d", "--data_type", required=True)
parser.add_argument("-i", "--indexdata_file", required=True)
parser.add_argument("-q", "--querydata_file", required=True)
parser.add_argument("-Lb", "--Lbuild", default=50, type=int)
parser.add_argument("-Ls", "--Lsearch", default=50, type=int)
parser.add_argument("-R", "--graph_degree", default=32, type=int)
parser.add_argument("-TI", "--num_insert_threads", default=8, type=int)
parser.add_argument("-TS", "--num_search_threads", default=8, type=int)
parser.add_argument("-K", default=10, type=int)
parser.add_argument("--gt_file", default="")
parser.add_argument("--json_timings_output", required=False, default=None, help="File to write out timings to as JSON. If not specified, timings will not be written out.")
args = parser.parse_args()
timings = insert_and_search(
args.data_type,
args.indexdata_file,
args.querydata_file,
args.Lbuild,
args.graph_degree, # Build args
args.K,
args.Lsearch,
args.num_insert_threads,
args.num_search_threads, # search args
args.gt_file,
)
if args.json_timings_output is not None:
import json
timings['log_file'] = args.json_timings_output
with open(args.json_timings_output, "w") as f:
json.dump(timings, f)
"""
An ingest optimized example with SIFT1M
source venv/bin/activate
python python/apps/in-mem-dynamic.py -d float \
-i "$HOME/data/sift/sift_base.fbin" -q "$HOME/data/sift/sift_query.fbin" --gt_file "$HOME/data/sift/gt100_base" \
-Lb 10 -R 30 -Ls 200
"""

View File

@@ -0,0 +1,149 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.
import argparse
from xml.dom.pulldom import default_bufsize
import diskannpy
import numpy as np
import utils
def build_and_search(
metric,
dtype_str,
index_directory,
indexdata_file,
querydata_file,
Lb,
graph_degree,
K,
Ls,
num_threads,
gt_file,
index_prefix,
search_only
) -> dict[str, float]:
"""
:param metric:
:param dtype_str:
:param index_directory:
:param indexdata_file:
:param querydata_file:
:param Lb:
:param graph_degree:
:param K:
:param Ls:
:param num_threads:
:param gt_file:
:param index_prefix:
:param search_only:
:return: Dictionary of timings. Key is the event and value is the number of seconds the event took
in wall-clock-time.
"""
timer_results: dict[str, float] = {}
method_timer: utils.Timer = utils.Timer()
if dtype_str == "float":
dtype = np.single
elif dtype_str == "int8":
dtype = np.byte
elif dtype_str == "uint8":
dtype = np.ubyte
else:
raise ValueError("data_type must be float, int8 or uint8")
# build index
if not search_only:
build_index_timer = utils.Timer()
diskannpy.build_memory_index(
data=indexdata_file,
distance_metric=metric,
vector_dtype=dtype,
index_directory=index_directory,
complexity=Lb,
graph_degree=graph_degree,
num_threads=num_threads,
index_prefix=index_prefix,
alpha=1.2,
use_pq_build=False,
num_pq_bytes=8,
use_opq=False,
)
timer_results["build_index_seconds"] = build_index_timer.elapsed()
# ready search object
load_index_timer = utils.Timer()
index = diskannpy.StaticMemoryIndex(
distance_metric=metric,
vector_dtype=dtype,
index_directory=index_directory,
num_threads=num_threads, # this can be different at search time if you would like
initial_search_complexity=Ls,
index_prefix=index_prefix
)
timer_results["load_index_seconds"] = load_index_timer.elapsed()
queries = utils.bin_to_numpy(dtype, querydata_file)
query_timer = utils.Timer()
ids, dists = index.batch_search(queries, 10, Ls, num_threads)
query_time = query_timer.elapsed()
qps = round(queries.shape[0]/query_time, 1)
print('Batch searched', queries.shape[0], 'in', query_time, 's @', qps, 'QPS')
timer_results["query_seconds"] = query_time
if gt_file != "":
recall_timer = utils.Timer()
recall = utils.calculate_recall_from_gt_file(K, ids, gt_file)
print(f"recall@{K} is {recall}")
timer_results["recall_seconds"] = recall_timer.elapsed()
timer_results['total_time_seconds'] = method_timer.elapsed()
return timer_results
if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog="in-mem-static",
description="Static in-memory build and search from vectors in a file",
)
parser.add_argument("-m", "--metric", required=False, default="l2")
parser.add_argument("-d", "--data_type", required=True)
parser.add_argument("-id", "--index_directory", required=False, default=".")
parser.add_argument("-i", "--indexdata_file", required=True)
parser.add_argument("-q", "--querydata_file", required=True)
parser.add_argument("-Lb", "--Lbuild", default=50, type=int)
parser.add_argument("-Ls", "--Lsearch", default=50, type=int)
parser.add_argument("-R", "--graph_degree", default=32, type=int)
parser.add_argument("-T", "--num_threads", default=8, type=int)
parser.add_argument("-K", default=10, type=int)
parser.add_argument("-G", "--gt_file", default="")
parser.add_argument("-ip", "--index_prefix", required=False, default="ann")
parser.add_argument("--search_only", required=False, default=False)
parser.add_argument("--json_timings_output", required=False, default=None, help="File to write out timings to as JSON. If not specified, timings will not be written out.")
args = parser.parse_args()
timings: dict[str, float] = build_and_search(
args.metric,
args.data_type,
args.index_directory.strip(),
args.indexdata_file.strip(),
args.querydata_file.strip(),
args.Lbuild,
args.graph_degree, # Build args
args.K,
args.Lsearch,
args.num_threads, # search args
args.gt_file,
args.index_prefix,
args.search_only
)
if args.json_timings_output is not None:
import json
timings['log_file'] = args.json_timings_output
with open(args.json_timings_output, "w") as f:
json.dump(timings, f)

View File

@@ -0,0 +1,103 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.
import argparse
import diskannpy
import numpy as np
import utils
def insert_and_search(
dtype_str,
indexdata_file,
querydata_file,
Lb,
graph_degree,
num_clusters,
num_insert_threads,
K,
Ls,
num_search_threads,
gt_file,
):
npts, ndims = utils.get_bin_metadata(indexdata_file)
if dtype_str == "float":
dtype = np.float32
elif dtype_str == "int8":
dtype = np.int8
elif dtype_str == "uint8":
dtype = np.uint8
else:
raise ValueError("data_type must be float, int8 or uint8")
index = diskannpy.DynamicMemoryIndex(
distance_metric="l2",
vector_dtype=dtype,
dimensions=ndims,
max_vectors=npts,
complexity=Lb,
graph_degree=graph_degree
)
queries = diskannpy.vectors_from_file(querydata_file, dtype)
data = diskannpy.vectors_from_file(indexdata_file, dtype)
offsets, permutation = utils.cluster_and_permute(
dtype_str, npts, ndims, data, num_clusters
)
i = 0
timer = utils.Timer()
for c in range(num_clusters):
cluster_index_range = range(offsets[c], offsets[c + 1])
cluster_indices = np.array(permutation[cluster_index_range], dtype=np.uint32)
cluster_data = data[cluster_indices, :]
index.batch_insert(cluster_data, cluster_indices + 1, num_insert_threads)
print('Inserted cluster', c, 'in', timer.elapsed(), 's')
tags, dists = index.batch_search(queries, K, Ls, num_search_threads)
print('Batch searched', queries.shape[0], 'queries in', timer.elapsed(), 's')
res_ids = tags - 1
if gt_file != "":
recall = utils.calculate_recall_from_gt_file(K, res_ids, gt_file)
print(f"recall@{K} is {recall}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog="in-mem-dynamic",
description="Inserts points dynamically in a clustered order and search from vectors in a file.",
)
parser.add_argument("-d", "--data_type", required=True)
parser.add_argument("-i", "--indexdata_file", required=True)
parser.add_argument("-q", "--querydata_file", required=True)
parser.add_argument("-Lb", "--Lbuild", default=50, type=int)
parser.add_argument("-Ls", "--Lsearch", default=50, type=int)
parser.add_argument("-R", "--graph_degree", default=32, type=int)
parser.add_argument("-TI", "--num_insert_threads", default=8, type=int)
parser.add_argument("-TS", "--num_search_threads", default=8, type=int)
parser.add_argument("-C", "--num_clusters", default=32, type=int)
parser.add_argument("-K", default=10, type=int)
parser.add_argument("--gt_file", default="")
args = parser.parse_args()
insert_and_search(
args.data_type,
args.indexdata_file,
args.querydata_file,
args.Lbuild,
args.graph_degree, # Build args
args.num_clusters,
args.num_insert_threads,
args.K,
args.Lsearch,
args.num_search_threads, # search args
args.gt_file,
)
# An ingest optimized example with SIFT1M
# python3 ~/DiskANN/python/apps/insert-in-clustered-order.py -d float \
# -i sift_base.fbin -q sift_query.fbin --gt_file gt100_base \
# -Lb 10 -R 30 -Ls 200 -C 32

View File

@@ -0,0 +1,120 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.
import numpy as np
from scipy.cluster.vq import vq, kmeans2
from typing import Tuple
from time import perf_counter
def get_bin_metadata(bin_file) -> Tuple[int, int]:
array = np.fromfile(file=bin_file, dtype=np.uint32, count=2)
return array[0], array[1]
def bin_to_numpy(dtype, bin_file) -> np.ndarray:
npts, ndims = get_bin_metadata(bin_file)
return np.fromfile(file=bin_file, dtype=dtype, offset=8).reshape(npts, ndims)
class Timer:
last = perf_counter()
def reset(self):
new = perf_counter()
self.last = new
def elapsed(self, round_digit:int = 3):
new = perf_counter()
elapsed_time = new - self.last
self.last = new
return round(elapsed_time, round_digit)
def numpy_to_bin(array, out_file):
shape = np.shape(array)
npts = shape[0].astype(np.uint32)
ndims = shape[1].astype(np.uint32)
f = open(out_file, "wb")
f.write(npts.tobytes())
f.write(ndims.tobytes())
f.write(array.tobytes())
f.close()
def read_gt_file(gt_file) -> Tuple[np.ndarray[int], np.ndarray[float]]:
"""
Return ids and distances to queries
"""
nq, K = get_bin_metadata(gt_file)
ids = np.fromfile(file=gt_file, dtype=np.uint32, offset=8, count=nq * K).reshape(
nq, K
)
dists = np.fromfile(
file=gt_file, dtype=np.float32, offset=8 + nq * K * 4, count=nq * K
).reshape(nq, K)
return ids, dists
def calculate_recall(
result_set_indices: np.ndarray[int],
truth_set_indices: np.ndarray[int],
recall_at: int = 5,
) -> float:
"""
result_set_indices and truth_set_indices correspond by row index. the columns in each row contain the indices of
the nearest neighbors, with result_set_indices being the approximate nearest neighbor results and truth_set_indices
being the brute force nearest neighbor calculation via sklearn's NearestNeighbor class.
:param result_set_indices:
:param truth_set_indices:
:param recall_at:
:return:
"""
found = 0
for i in range(0, result_set_indices.shape[0]):
result_set_set = set(result_set_indices[i][0:recall_at])
truth_set_set = set(truth_set_indices[i][0:recall_at])
found += len(result_set_set.intersection(truth_set_set))
return found / (result_set_indices.shape[0] * recall_at)
def calculate_recall_from_gt_file(K: int, ids: np.ndarray[int], gt_file: str) -> float:
"""
Calculate recall from ids returned from search and those read from file
"""
gt_ids, gt_dists = read_gt_file(gt_file)
return calculate_recall(ids, gt_ids, K)
def cluster_and_permute(
dtype_str, npts, ndims, data, num_clusters
) -> Tuple[np.ndarray[int], np.ndarray[int]]:
"""
Cluster the data and return permutation of row indices
that would group indices of the same cluster together
"""
sample_size = min(100000, npts)
sample_indices = np.random.choice(range(npts), size=sample_size, replace=False)
sampled_data = data[sample_indices, :]
centroids, sample_labels = kmeans2(sampled_data, num_clusters, minit="++", iter=10)
labels, dist = vq(data, centroids)
count = np.zeros(num_clusters)
for i in range(npts):
count[labels[i]] += 1
print("Cluster counts")
print(count)
offsets = np.zeros(num_clusters + 1, dtype=int)
for i in range(0, num_clusters, 1):
offsets[i + 1] = offsets[i] + count[i]
permutation = np.zeros(npts, dtype=int)
counters = np.zeros(num_clusters, dtype=int)
for i in range(npts):
label = labels[i]
row = offsets[label] + counters[label]
counters[label] += 1
permutation[row] = i
return offsets, permutation