Initial commit

This commit is contained in:
yichuan520030910320
2025-06-30 09:05:05 +00:00
commit 46f6cc100b
1231 changed files with 278432 additions and 0 deletions

View File

@@ -0,0 +1,152 @@
import diskannpy as dap
import numpy as np
import numpy.typing as npt
import fire
from contextlib import contextmanager
from time import perf_counter
from typing import Tuple
def _basic_setup(
dtype: str,
query_vectors_file: str
) -> Tuple[dap.VectorDType, npt.NDArray[dap.VectorDType]]:
_dtype = dap.valid_dtype(dtype)
vectors_to_query = dap.vectors_from_binary(query_vectors_file, dtype=_dtype)
return _dtype, vectors_to_query
def dynamic(
dtype: str,
index_vectors_file: str,
query_vectors_file: str,
build_complexity: int,
graph_degree: int,
K: int,
search_complexity: int,
num_insert_threads: int,
num_search_threads: int,
gt_file: str = "",
):
_dtype, vectors_to_query = _basic_setup(dtype, query_vectors_file)
vectors_to_index = dap.vectors_from_binary(index_vectors_file, dtype=_dtype)
npts, ndims = vectors_to_index.shape
index = dap.DynamicMemoryIndex(
"l2", _dtype, ndims, npts, build_complexity, graph_degree
)
tags = np.arange(1, npts+1, dtype=np.uintc)
timer = Timer()
with timer.time("batch insert"):
index.batch_insert(vectors_to_index, tags, num_insert_threads)
delete_tags = np.random.choice(
np.array(range(1, npts + 1, 1), dtype=np.uintc),
size=int(0.5 * npts),
replace=False
)
with timer.time("mark deletion"):
for tag in delete_tags:
index.mark_deleted(tag)
with timer.time("consolidation"):
index.consolidate_delete()
deleted_data = vectors_to_index[delete_tags - 1, :]
with timer.time("re-insertion"):
index.batch_insert(deleted_data, delete_tags, num_insert_threads)
with timer.time("batch searched"):
tags, dists = index.batch_search(vectors_to_query, K, search_complexity, num_search_threads)
# res_ids = tags - 1
# if gt_file != "":
# recall = utils.calculate_recall_from_gt_file(K, res_ids, gt_file)
# print(f"recall@{K} is {recall}")
def static(
dtype: str,
index_directory: str,
index_vectors_file: str,
query_vectors_file: str,
build_complexity: int,
graph_degree: int,
K: int,
search_complexity: int,
num_threads: int,
gt_file: str = "",
index_prefix: str = "ann"
):
_dtype, vectors_to_query = _basic_setup(dtype, query_vectors_file)
timer = Timer()
with timer.time("build static index"):
# build index
dap.build_memory_index(
data=index_vectors_file,
metric="l2",
vector_dtype=_dtype,
index_directory=index_directory,
complexity=build_complexity,
graph_degree=graph_degree,
num_threads=num_threads,
index_prefix=index_prefix,
alpha=1.2,
use_pq_build=False,
num_pq_bytes=8,
use_opq=False,
)
with timer.time("load static index"):
# ready search object
index = dap.StaticMemoryIndex(
metric="l2",
vector_dtype=_dtype,
data_path=index_vectors_file,
index_directory=index_directory,
num_threads=num_threads, # this can be different at search time if you would like
initial_search_complexity=search_complexity,
index_prefix=index_prefix
)
ids, dists = index.batch_search(vectors_to_query, K, search_complexity, num_threads)
# if gt_file != "":
# recall = utils.calculate_recall_from_gt_file(K, ids, gt_file)
# print(f"recall@{K} is {recall}")
def dynamic_clustered():
pass
def generate_clusters():
pass
class Timer:
def __init__(self):
self._start = -1
@contextmanager
def time(self, message: str):
start = perf_counter()
if self._start == -1:
self._start = start
yield
now = perf_counter()
print(f"Operation {message} completed in {(now - start):.3f}s, total: {(now - self._start):.3f}s")
if __name__ == "__main__":
fire.Fire({
"in-mem-dynamic": dynamic,
"in-mem-static": static,
"in-mem-dynamic-clustered": dynamic_clustered,
"generate-clusters": generate_clusters
}, name="cli")