Initial commit
This commit is contained in:
313
packages/leann-backend-hnsw/leann_backend_hnsw/hnsw_backend.py
Normal file
313
packages/leann-backend-hnsw/leann_backend_hnsw/hnsw_backend.py
Normal file
@@ -0,0 +1,313 @@
|
||||
import numpy as np
|
||||
import os
|
||||
import json
|
||||
import struct
|
||||
from pathlib import Path
|
||||
from typing import Dict
|
||||
import contextlib
|
||||
import threading
|
||||
import time
|
||||
import atexit
|
||||
import socket
|
||||
import subprocess
|
||||
import sys
|
||||
|
||||
# 文件: packages/leann-backend-hnsw/leann_backend_hnsw/hnsw_backend.py
|
||||
|
||||
# ... (其他 import 保持不变) ...
|
||||
|
||||
from leann.registry import register_backend
|
||||
from leann.interface import (
|
||||
LeannBackendFactoryInterface,
|
||||
LeannBackendBuilderInterface,
|
||||
LeannBackendSearcherInterface
|
||||
)
|
||||
|
||||
def get_metric_map():
|
||||
from . import faiss
|
||||
return {
|
||||
"mips": faiss.METRIC_INNER_PRODUCT,
|
||||
"l2": faiss.METRIC_L2,
|
||||
"cosine": faiss.METRIC_INNER_PRODUCT, # Will need normalization
|
||||
}
|
||||
|
||||
def _check_port(port: int) -> bool:
|
||||
"""Check if a port is in use"""
|
||||
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
||||
return s.connect_ex(('localhost', port)) == 0
|
||||
|
||||
class HNSWEmbeddingServerManager:
|
||||
"""
|
||||
HNSW-specific embedding server manager that handles the lifecycle of the embedding server process.
|
||||
Mirrors the DiskANN EmbeddingServerManager architecture.
|
||||
"""
|
||||
def __init__(self):
|
||||
self.server_process = None
|
||||
self.server_port = None
|
||||
atexit.register(self.stop_server)
|
||||
|
||||
def start_server(self, port=5556, model_name="sentence-transformers/all-mpnet-base-v2", passages_file=None):
|
||||
"""
|
||||
Start the HNSW embedding server process.
|
||||
|
||||
Args:
|
||||
port: ZMQ port for the server
|
||||
model_name: Name of the embedding model to use
|
||||
passages_file: Optional path to passages JSON file
|
||||
"""
|
||||
if self.server_process and self.server_process.poll() is None:
|
||||
print(f"INFO: Reusing existing HNSW server process for this session (PID {self.server_process.pid})")
|
||||
return True
|
||||
|
||||
# Check if port is already in use
|
||||
if _check_port(port):
|
||||
print(f"WARNING: Port {port} is already in use. Assuming an external HNSW server is running and connecting to it.")
|
||||
return True
|
||||
|
||||
print(f"INFO: Starting session-level HNSW embedding server as a background process...")
|
||||
|
||||
try:
|
||||
command = [
|
||||
sys.executable,
|
||||
"-m", "packages.leann-backend-hnsw.src.leann_backend_hnsw.hnsw_embedding_server",
|
||||
"--zmq-port", str(port),
|
||||
"--model-name", model_name
|
||||
]
|
||||
|
||||
# Add passages file if provided
|
||||
if passages_file:
|
||||
command.extend(["--passages-file", str(passages_file)])
|
||||
|
||||
project_root = Path(__file__).parent.parent.parent.parent
|
||||
print(f"INFO: Running HNSW command from project root: {project_root}")
|
||||
|
||||
self.server_process = subprocess.Popen(
|
||||
command,
|
||||
cwd=project_root,
|
||||
stdout=subprocess.PIPE,
|
||||
stderr=subprocess.PIPE,
|
||||
text=True,
|
||||
encoding='utf-8'
|
||||
)
|
||||
self.server_port = port
|
||||
print(f"INFO: HNSW server process started with PID: {self.server_process.pid}")
|
||||
|
||||
max_wait, wait_interval = 30, 0.5
|
||||
for _ in range(int(max_wait / wait_interval)):
|
||||
if _check_port(port):
|
||||
print(f"✅ HNSW embedding server is up and ready for this session.")
|
||||
log_thread = threading.Thread(target=self._log_monitor, daemon=True)
|
||||
log_thread.start()
|
||||
return True
|
||||
if self.server_process.poll() is not None:
|
||||
print("❌ ERROR: HNSW server process terminated unexpectedly during startup.")
|
||||
self._log_monitor()
|
||||
return False
|
||||
time.sleep(wait_interval)
|
||||
|
||||
print(f"❌ ERROR: HNSW server process failed to start listening within {max_wait} seconds.")
|
||||
self.stop_server()
|
||||
return False
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ ERROR: Failed to start HNSW embedding server process: {e}")
|
||||
return False
|
||||
|
||||
def _log_monitor(self):
|
||||
"""Monitor server logs"""
|
||||
if not self.server_process:
|
||||
return
|
||||
try:
|
||||
if self.server_process.stdout:
|
||||
for line in iter(self.server_process.stdout.readline, ''):
|
||||
print(f"[HNSWEmbeddingServer LOG]: {line.strip()}")
|
||||
self.server_process.stdout.close()
|
||||
if self.server_process.stderr:
|
||||
for line in iter(self.server_process.stderr.readline, ''):
|
||||
print(f"[HNSWEmbeddingServer ERROR]: {line.strip()}")
|
||||
self.server_process.stderr.close()
|
||||
except Exception as e:
|
||||
print(f"HNSW Log monitor error: {e}")
|
||||
|
||||
def stop_server(self):
|
||||
"""Stop the HNSW embedding server process"""
|
||||
if self.server_process and self.server_process.poll() is None:
|
||||
print(f"INFO: Terminating HNSW session server process (PID: {self.server_process.pid})...")
|
||||
self.server_process.terminate()
|
||||
try:
|
||||
self.server_process.wait(timeout=5)
|
||||
print("INFO: HNSW server process terminated.")
|
||||
except subprocess.TimeoutExpired:
|
||||
print("WARNING: HNSW server process did not terminate gracefully, killing it.")
|
||||
self.server_process.kill()
|
||||
self.server_process = None
|
||||
|
||||
@register_backend("hnsw")
|
||||
class HNSWBackend(LeannBackendFactoryInterface):
|
||||
@staticmethod
|
||||
def builder(**kwargs) -> LeannBackendBuilderInterface:
|
||||
return HNSWBuilder(**kwargs)
|
||||
|
||||
@staticmethod
|
||||
def searcher(index_path: str, **kwargs) -> LeannBackendSearcherInterface:
|
||||
path = Path(index_path)
|
||||
meta_path = path.parent / f"{path.stem}.hnsw.meta.json"
|
||||
if not meta_path.exists():
|
||||
raise FileNotFoundError(f"Leann metadata file not found at {meta_path}. Cannot infer vector dimension for searcher.")
|
||||
|
||||
with open(meta_path, 'r') as f:
|
||||
meta = json.load(f)
|
||||
|
||||
try:
|
||||
from sentence_transformers import SentenceTransformer
|
||||
model = SentenceTransformer(meta.get("embedding_model"))
|
||||
dimensions = model.get_sentence_embedding_dimension()
|
||||
kwargs['dimensions'] = dimensions
|
||||
except ImportError:
|
||||
raise ImportError("sentence-transformers is required to infer embedding dimensions. Please install it.")
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Could not load SentenceTransformer model to get dimension: {e}")
|
||||
|
||||
return HNSWSearcher(index_path, **kwargs)
|
||||
|
||||
class HNSWBuilder(LeannBackendBuilderInterface):
|
||||
def __init__(self, **kwargs):
|
||||
self.build_params = kwargs
|
||||
|
||||
def build(self, data: np.ndarray, index_path: str, **kwargs):
|
||||
"""Build HNSW index using FAISS"""
|
||||
from . import faiss
|
||||
|
||||
path = Path(index_path)
|
||||
index_dir = path.parent
|
||||
index_prefix = path.stem
|
||||
|
||||
index_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if data.dtype != np.float32:
|
||||
data = data.astype(np.float32)
|
||||
if not data.flags['C_CONTIGUOUS']:
|
||||
data = np.ascontiguousarray(data)
|
||||
|
||||
build_kwargs = {**self.build_params, **kwargs}
|
||||
metric_str = build_kwargs.get("distance_metric", "mips").lower()
|
||||
metric_enum = get_metric_map().get(metric_str)
|
||||
if metric_enum is None:
|
||||
raise ValueError(f"Unsupported distance_metric '{metric_str}'.")
|
||||
|
||||
# HNSW parameters
|
||||
M = build_kwargs.get("M", 32) # Max connections per layer
|
||||
efConstruction = build_kwargs.get("efConstruction", 200) # Size of the dynamic candidate list for construction
|
||||
dim = data.shape[1]
|
||||
|
||||
print(f"INFO: Building HNSW index for {data.shape[0]} vectors with metric {metric_enum}...")
|
||||
|
||||
try:
|
||||
# Create HNSW index
|
||||
if metric_enum == faiss.METRIC_INNER_PRODUCT:
|
||||
index = faiss.IndexHNSWFlat(dim, M, metric_enum)
|
||||
else: # L2
|
||||
index = faiss.IndexHNSWFlat(dim, M, metric_enum)
|
||||
|
||||
# Set construction parameters
|
||||
index.hnsw.efConstruction = efConstruction
|
||||
|
||||
# Normalize vectors if using cosine similarity
|
||||
if metric_str == "cosine":
|
||||
faiss.normalize_L2(data)
|
||||
|
||||
# Add vectors to index
|
||||
index.add(data.shape[0], faiss.swig_ptr(data))
|
||||
|
||||
# Save index
|
||||
index_file = index_dir / f"{index_prefix}.index"
|
||||
faiss.write_index(index, str(index_file))
|
||||
|
||||
print(f"✅ HNSW index built successfully at '{index_file}'")
|
||||
|
||||
except Exception as e:
|
||||
print(f"💥 ERROR: HNSW index build failed. Exception: {e}")
|
||||
raise
|
||||
|
||||
class HNSWSearcher(LeannBackendSearcherInterface):
|
||||
def __init__(self, index_path: str, **kwargs):
|
||||
from . import faiss
|
||||
path = Path(index_path)
|
||||
index_dir = path.parent
|
||||
index_prefix = path.stem
|
||||
|
||||
metric_str = kwargs.get("distance_metric", "mips").lower()
|
||||
metric_enum = get_metric_map().get(metric_str)
|
||||
if metric_enum is None:
|
||||
raise ValueError(f"Unsupported distance_metric '{metric_str}'.")
|
||||
|
||||
dimensions = kwargs.get("dimensions")
|
||||
if not dimensions:
|
||||
raise ValueError("Vector dimension not provided to HNSWSearcher.")
|
||||
|
||||
try:
|
||||
# Load FAISS HNSW index
|
||||
index_file = index_dir / f"{index_prefix}.index"
|
||||
if not index_file.exists():
|
||||
raise FileNotFoundError(f"HNSW index file not found at {index_file}")
|
||||
|
||||
self._index = faiss.read_index(str(index_file))
|
||||
self.metric_str = metric_str
|
||||
self.embedding_server_manager = HNSWEmbeddingServerManager()
|
||||
print("✅ HNSW index loaded successfully.")
|
||||
|
||||
except Exception as e:
|
||||
print(f"💥 ERROR: Failed to load HNSW index. Exception: {e}")
|
||||
raise
|
||||
|
||||
def search(self, query: np.ndarray, top_k: int, **kwargs) -> Dict[str, any]:
|
||||
"""Search using HNSW index with optional recompute functionality"""
|
||||
ef = kwargs.get("ef", 200) # Size of the dynamic candidate list for search
|
||||
|
||||
# Recompute parameters
|
||||
recompute_neighbor_embeddings = kwargs.get("recompute_neighbor_embeddings", False)
|
||||
zmq_port = kwargs.get("zmq_port", 5556)
|
||||
embedding_model = kwargs.get("embedding_model", "sentence-transformers/all-mpnet-base-v2")
|
||||
passages_file = kwargs.get("passages_file", None)
|
||||
|
||||
if recompute_neighbor_embeddings:
|
||||
print(f"INFO: HNSW ZMQ mode enabled - ensuring embedding server is running")
|
||||
|
||||
if not self.embedding_server_manager.start_server(zmq_port, embedding_model, passages_file):
|
||||
print(f"WARNING: Failed to start HNSW embedding server, falling back to standard search")
|
||||
kwargs['recompute_neighbor_embeddings'] = False
|
||||
|
||||
if query.dtype != np.float32:
|
||||
query = query.astype(np.float32)
|
||||
if query.ndim == 1:
|
||||
query = np.expand_dims(query, axis=0)
|
||||
|
||||
# Normalize query if using cosine similarity
|
||||
if self.metric_str == "cosine":
|
||||
faiss.normalize_L2(query)
|
||||
|
||||
try:
|
||||
# Set search parameter
|
||||
self._index.hnsw.efSearch = ef
|
||||
|
||||
if recompute_neighbor_embeddings:
|
||||
# Use custom search with recompute
|
||||
# This would require implementing custom HNSW search logic
|
||||
# For now, we'll fall back to standard search
|
||||
print("WARNING: Recompute functionality for HNSW not yet implemented, using standard search")
|
||||
distances, labels = self._index.search(query, top_k)
|
||||
else:
|
||||
# Standard FAISS search
|
||||
distances, labels = self._index.search(query, top_k)
|
||||
|
||||
return {"labels": labels, "distances": distances}
|
||||
|
||||
except Exception as e:
|
||||
print(f"💥 ERROR: HNSW search failed. Exception: {e}")
|
||||
batch_size = query.shape[0]
|
||||
return {"labels": np.full((batch_size, top_k), -1, dtype=np.int64),
|
||||
"distances": np.full((batch_size, top_k), float('inf'), dtype=np.float32)}
|
||||
|
||||
def __del__(self):
|
||||
if hasattr(self, 'embedding_server_manager'):
|
||||
self.embedding_server_manager.stop_server()
|
||||
Reference in New Issue
Block a user