Initial commit

This commit is contained in:
yichuan520030910320
2025-06-30 09:05:05 +00:00
commit 46f6cc100b
1231 changed files with 278432 additions and 0 deletions

View File

@@ -0,0 +1,6 @@
# The Torch contrib
This contrib directory contains a few Pytorch routines that
are useful for similarity search. They do not necessarily depend on Faiss.
The code is designed to work with CPU and GPU tensors.

View File

View File

@@ -0,0 +1,60 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
This contrib module contains Pytorch code for k-means clustering
"""
import faiss
import faiss.contrib.torch_utils
import torch
# the kmeans can produce both torch and numpy centroids
from faiss.contrib.clustering import kmeans
class DatasetAssign:
"""Wrapper for a tensor that offers a function to assign the vectors
to centroids. All other implementations offer the same interface"""
def __init__(self, x):
self.x = x
def count(self):
return self.x.shape[0]
def dim(self):
return self.x.shape[1]
def get_subset(self, indices):
return self.x[indices]
def perform_search(self, centroids):
return faiss.knn(self.x, centroids, 1)
def assign_to(self, centroids, weights=None):
D, I = self.perform_search(centroids)
I = I.ravel()
D = D.ravel()
nc, d = centroids.shape
sum_per_centroid = torch.zeros_like(centroids)
if weights is None:
sum_per_centroid.index_add_(0, I, self.x)
else:
sum_per_centroid.index_add_(0, I, self.x * weights[:, None])
# the indices are still in numpy.
return I.cpu().numpy(), D, sum_per_centroid
class DatasetAssignGPU(DatasetAssign):
def __init__(self, res, x):
DatasetAssign.__init__(self, x)
self.res = res
def perform_search(self, centroids):
return faiss.knn_gpu(self.res, self.x, centroids, 1)

View File

@@ -0,0 +1,96 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
This contrib module contains Pytorch code for quantization.
"""
import torch
import faiss
import math
from faiss.contrib.torch import clustering
# the kmeans can produce both torch and numpy centroids
class Quantizer:
def __init__(self, d, code_size):
"""
d: dimension of vectors
code_size: nb of bytes of the code (per vector)
"""
self.d = d
self.code_size = code_size
def train(self, x):
"""
takes a n-by-d array and peforms training
"""
pass
def encode(self, x):
"""
takes a n-by-d float array, encodes to an n-by-code_size uint8 array
"""
pass
def decode(self, codes):
"""
takes a n-by-code_size uint8 array, returns a n-by-d array
"""
pass
class VectorQuantizer(Quantizer):
def __init__(self, d, k):
code_size = int(math.ceil(torch.log2(k) / 8))
Quantizer.__init__(d, code_size)
self.k = k
def train(self, x):
pass
class ProductQuantizer(Quantizer):
def __init__(self, d, M, nbits):
""" M: number of subvectors, d%M == 0
nbits: number of bits that each vector is encoded into
"""
assert d % M == 0
assert nbits == 8 # todo: implement other nbits values
code_size = int(math.ceil(M * nbits / 8))
Quantizer.__init__(self, d, code_size)
self.M = M
self.nbits = nbits
self.code_size = code_size
def train(self, x):
nc = 2 ** self.nbits
sd = self.d // self.M
dev = x.device
dtype = x.dtype
self.codebook = torch.zeros((self.M, nc, sd), device=dev, dtype=dtype)
for m in range(self.M):
xsub = x[:, m * self.d // self.M: (m + 1) * self.d // self.M]
data = clustering.DatasetAssign(xsub.contiguous())
self.codebook[m] = clustering.kmeans(2 ** self.nbits, data)
def encode(self, x):
codes = torch.zeros((x.shape[0], self.code_size), dtype=torch.uint8)
for m in range(self.M):
xsub = x[:, m * self.d // self.M:(m + 1) * self.d // self.M]
_, I = faiss.knn(xsub.contiguous(), self.codebook[m], 1)
codes[:, m] = I.ravel()
return codes
def decode(self, codes):
idxs = [codes[:, m].long() for m in range(self.M)]
vectors = [self.codebook[m, idxs[m], :] for m in range(self.M)]
stacked_vectors = torch.stack(vectors, dim=1)
cbd = self.codebook.shape[-1]
x_rec = stacked_vectors.reshape(-1, cbd * self.M)
return x_rec