Initial commit
This commit is contained in:
6
packages/leann-backend-hnsw/third_party/faiss/contrib/torch/README.md
vendored
Normal file
6
packages/leann-backend-hnsw/third_party/faiss/contrib/torch/README.md
vendored
Normal file
@@ -0,0 +1,6 @@
|
||||
# The Torch contrib
|
||||
|
||||
This contrib directory contains a few Pytorch routines that
|
||||
are useful for similarity search. They do not necessarily depend on Faiss.
|
||||
|
||||
The code is designed to work with CPU and GPU tensors.
|
||||
0
packages/leann-backend-hnsw/third_party/faiss/contrib/torch/__init__.py
vendored
Normal file
0
packages/leann-backend-hnsw/third_party/faiss/contrib/torch/__init__.py
vendored
Normal file
60
packages/leann-backend-hnsw/third_party/faiss/contrib/torch/clustering.py
vendored
Normal file
60
packages/leann-backend-hnsw/third_party/faiss/contrib/torch/clustering.py
vendored
Normal file
@@ -0,0 +1,60 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
#
|
||||
# This source code is licensed under the MIT license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
"""
|
||||
This contrib module contains Pytorch code for k-means clustering
|
||||
"""
|
||||
import faiss
|
||||
import faiss.contrib.torch_utils
|
||||
import torch
|
||||
|
||||
# the kmeans can produce both torch and numpy centroids
|
||||
from faiss.contrib.clustering import kmeans
|
||||
|
||||
|
||||
class DatasetAssign:
|
||||
"""Wrapper for a tensor that offers a function to assign the vectors
|
||||
to centroids. All other implementations offer the same interface"""
|
||||
|
||||
def __init__(self, x):
|
||||
self.x = x
|
||||
|
||||
def count(self):
|
||||
return self.x.shape[0]
|
||||
|
||||
def dim(self):
|
||||
return self.x.shape[1]
|
||||
|
||||
def get_subset(self, indices):
|
||||
return self.x[indices]
|
||||
|
||||
def perform_search(self, centroids):
|
||||
return faiss.knn(self.x, centroids, 1)
|
||||
|
||||
def assign_to(self, centroids, weights=None):
|
||||
D, I = self.perform_search(centroids)
|
||||
|
||||
I = I.ravel()
|
||||
D = D.ravel()
|
||||
nc, d = centroids.shape
|
||||
|
||||
sum_per_centroid = torch.zeros_like(centroids)
|
||||
if weights is None:
|
||||
sum_per_centroid.index_add_(0, I, self.x)
|
||||
else:
|
||||
sum_per_centroid.index_add_(0, I, self.x * weights[:, None])
|
||||
|
||||
# the indices are still in numpy.
|
||||
return I.cpu().numpy(), D, sum_per_centroid
|
||||
|
||||
|
||||
class DatasetAssignGPU(DatasetAssign):
|
||||
|
||||
def __init__(self, res, x):
|
||||
DatasetAssign.__init__(self, x)
|
||||
self.res = res
|
||||
|
||||
def perform_search(self, centroids):
|
||||
return faiss.knn_gpu(self.res, self.x, centroids, 1)
|
||||
96
packages/leann-backend-hnsw/third_party/faiss/contrib/torch/quantization.py
vendored
Normal file
96
packages/leann-backend-hnsw/third_party/faiss/contrib/torch/quantization.py
vendored
Normal file
@@ -0,0 +1,96 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
#
|
||||
# This source code is licensed under the MIT license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
"""
|
||||
This contrib module contains Pytorch code for quantization.
|
||||
"""
|
||||
|
||||
import torch
|
||||
import faiss
|
||||
import math
|
||||
from faiss.contrib.torch import clustering
|
||||
# the kmeans can produce both torch and numpy centroids
|
||||
|
||||
|
||||
class Quantizer:
|
||||
|
||||
def __init__(self, d, code_size):
|
||||
"""
|
||||
d: dimension of vectors
|
||||
code_size: nb of bytes of the code (per vector)
|
||||
"""
|
||||
self.d = d
|
||||
self.code_size = code_size
|
||||
|
||||
def train(self, x):
|
||||
"""
|
||||
takes a n-by-d array and peforms training
|
||||
"""
|
||||
pass
|
||||
|
||||
def encode(self, x):
|
||||
"""
|
||||
takes a n-by-d float array, encodes to an n-by-code_size uint8 array
|
||||
"""
|
||||
pass
|
||||
|
||||
def decode(self, codes):
|
||||
"""
|
||||
takes a n-by-code_size uint8 array, returns a n-by-d array
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class VectorQuantizer(Quantizer):
|
||||
|
||||
def __init__(self, d, k):
|
||||
|
||||
code_size = int(math.ceil(torch.log2(k) / 8))
|
||||
Quantizer.__init__(d, code_size)
|
||||
self.k = k
|
||||
|
||||
def train(self, x):
|
||||
pass
|
||||
|
||||
|
||||
class ProductQuantizer(Quantizer):
|
||||
def __init__(self, d, M, nbits):
|
||||
""" M: number of subvectors, d%M == 0
|
||||
nbits: number of bits that each vector is encoded into
|
||||
"""
|
||||
assert d % M == 0
|
||||
assert nbits == 8 # todo: implement other nbits values
|
||||
code_size = int(math.ceil(M * nbits / 8))
|
||||
Quantizer.__init__(self, d, code_size)
|
||||
self.M = M
|
||||
self.nbits = nbits
|
||||
self.code_size = code_size
|
||||
|
||||
def train(self, x):
|
||||
nc = 2 ** self.nbits
|
||||
sd = self.d // self.M
|
||||
dev = x.device
|
||||
dtype = x.dtype
|
||||
self.codebook = torch.zeros((self.M, nc, sd), device=dev, dtype=dtype)
|
||||
for m in range(self.M):
|
||||
xsub = x[:, m * self.d // self.M: (m + 1) * self.d // self.M]
|
||||
data = clustering.DatasetAssign(xsub.contiguous())
|
||||
self.codebook[m] = clustering.kmeans(2 ** self.nbits, data)
|
||||
|
||||
def encode(self, x):
|
||||
codes = torch.zeros((x.shape[0], self.code_size), dtype=torch.uint8)
|
||||
for m in range(self.M):
|
||||
xsub = x[:, m * self.d // self.M:(m + 1) * self.d // self.M]
|
||||
_, I = faiss.knn(xsub.contiguous(), self.codebook[m], 1)
|
||||
codes[:, m] = I.ravel()
|
||||
return codes
|
||||
|
||||
def decode(self, codes):
|
||||
idxs = [codes[:, m].long() for m in range(self.M)]
|
||||
vectors = [self.codebook[m, idxs[m], :] for m in range(self.M)]
|
||||
stacked_vectors = torch.stack(vectors, dim=1)
|
||||
cbd = self.codebook.shape[-1]
|
||||
x_rec = stacked_vectors.reshape(-1, cbd * self.M)
|
||||
return x_rec
|
||||
Reference in New Issue
Block a user