Initial commit
This commit is contained in:
96
packages/leann-backend-hnsw/third_party/faiss/contrib/torch/quantization.py
vendored
Normal file
96
packages/leann-backend-hnsw/third_party/faiss/contrib/torch/quantization.py
vendored
Normal file
@@ -0,0 +1,96 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
#
|
||||
# This source code is licensed under the MIT license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
"""
|
||||
This contrib module contains Pytorch code for quantization.
|
||||
"""
|
||||
|
||||
import torch
|
||||
import faiss
|
||||
import math
|
||||
from faiss.contrib.torch import clustering
|
||||
# the kmeans can produce both torch and numpy centroids
|
||||
|
||||
|
||||
class Quantizer:
|
||||
|
||||
def __init__(self, d, code_size):
|
||||
"""
|
||||
d: dimension of vectors
|
||||
code_size: nb of bytes of the code (per vector)
|
||||
"""
|
||||
self.d = d
|
||||
self.code_size = code_size
|
||||
|
||||
def train(self, x):
|
||||
"""
|
||||
takes a n-by-d array and peforms training
|
||||
"""
|
||||
pass
|
||||
|
||||
def encode(self, x):
|
||||
"""
|
||||
takes a n-by-d float array, encodes to an n-by-code_size uint8 array
|
||||
"""
|
||||
pass
|
||||
|
||||
def decode(self, codes):
|
||||
"""
|
||||
takes a n-by-code_size uint8 array, returns a n-by-d array
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class VectorQuantizer(Quantizer):
|
||||
|
||||
def __init__(self, d, k):
|
||||
|
||||
code_size = int(math.ceil(torch.log2(k) / 8))
|
||||
Quantizer.__init__(d, code_size)
|
||||
self.k = k
|
||||
|
||||
def train(self, x):
|
||||
pass
|
||||
|
||||
|
||||
class ProductQuantizer(Quantizer):
|
||||
def __init__(self, d, M, nbits):
|
||||
""" M: number of subvectors, d%M == 0
|
||||
nbits: number of bits that each vector is encoded into
|
||||
"""
|
||||
assert d % M == 0
|
||||
assert nbits == 8 # todo: implement other nbits values
|
||||
code_size = int(math.ceil(M * nbits / 8))
|
||||
Quantizer.__init__(self, d, code_size)
|
||||
self.M = M
|
||||
self.nbits = nbits
|
||||
self.code_size = code_size
|
||||
|
||||
def train(self, x):
|
||||
nc = 2 ** self.nbits
|
||||
sd = self.d // self.M
|
||||
dev = x.device
|
||||
dtype = x.dtype
|
||||
self.codebook = torch.zeros((self.M, nc, sd), device=dev, dtype=dtype)
|
||||
for m in range(self.M):
|
||||
xsub = x[:, m * self.d // self.M: (m + 1) * self.d // self.M]
|
||||
data = clustering.DatasetAssign(xsub.contiguous())
|
||||
self.codebook[m] = clustering.kmeans(2 ** self.nbits, data)
|
||||
|
||||
def encode(self, x):
|
||||
codes = torch.zeros((x.shape[0], self.code_size), dtype=torch.uint8)
|
||||
for m in range(self.M):
|
||||
xsub = x[:, m * self.d // self.M:(m + 1) * self.d // self.M]
|
||||
_, I = faiss.knn(xsub.contiguous(), self.codebook[m], 1)
|
||||
codes[:, m] = I.ravel()
|
||||
return codes
|
||||
|
||||
def decode(self, codes):
|
||||
idxs = [codes[:, m].long() for m in range(self.M)]
|
||||
vectors = [self.codebook[m, idxs[m], :] for m in range(self.M)]
|
||||
stacked_vectors = torch.stack(vectors, dim=1)
|
||||
cbd = self.codebook.shape[-1]
|
||||
x_rec = stacked_vectors.reshape(-1, cbd * self.M)
|
||||
return x_rec
|
||||
Reference in New Issue
Block a user