Initial commit
This commit is contained in:
93
packages/leann-backend-hnsw/third_party/faiss/tests/test_ivfpq_indexing.cpp
vendored
Normal file
93
packages/leann-backend-hnsw/third_party/faiss/tests/test_ivfpq_indexing.cpp
vendored
Normal file
@@ -0,0 +1,93 @@
|
||||
/*
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
*
|
||||
* This source code is licensed under the MIT license found in the
|
||||
* LICENSE file in the root directory of this source tree.
|
||||
*/
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <random>
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
#include <faiss/IndexFlat.h>
|
||||
#include <faiss/IndexIVFPQ.h>
|
||||
|
||||
TEST(IVFPQ, accuracy) {
|
||||
// dimension of the vectors to index
|
||||
int d = 64;
|
||||
|
||||
// size of the database we plan to index
|
||||
size_t nb = 1000;
|
||||
|
||||
// make a set of nt training vectors in the unit cube
|
||||
// (could be the database)
|
||||
size_t nt = 1500;
|
||||
|
||||
// make the index object and train it
|
||||
faiss::IndexFlatL2 coarse_quantizer(d);
|
||||
|
||||
// a reasonable number of cetroids to index nb vectors
|
||||
int ncentroids = 25;
|
||||
|
||||
faiss::IndexIVFPQ index(&coarse_quantizer, d, ncentroids, 16, 8);
|
||||
|
||||
// index that gives the ground-truth
|
||||
faiss::IndexFlatL2 index_gt(d);
|
||||
|
||||
std::mt19937 rng;
|
||||
std::uniform_real_distribution<> distrib;
|
||||
|
||||
{ // training
|
||||
|
||||
std::vector<float> trainvecs(nt * d);
|
||||
for (size_t i = 0; i < nt * d; i++) {
|
||||
trainvecs[i] = distrib(rng);
|
||||
}
|
||||
index.verbose = true;
|
||||
index.train(nt, trainvecs.data());
|
||||
}
|
||||
|
||||
{ // populating the database
|
||||
|
||||
std::vector<float> database(nb * d);
|
||||
for (size_t i = 0; i < nb * d; i++) {
|
||||
database[i] = distrib(rng);
|
||||
}
|
||||
|
||||
index.add(nb, database.data());
|
||||
index_gt.add(nb, database.data());
|
||||
}
|
||||
|
||||
int nq = 200;
|
||||
int n_ok;
|
||||
|
||||
{ // searching the database
|
||||
|
||||
std::vector<float> queries(nq * d);
|
||||
for (size_t i = 0; i < nq * d; i++) {
|
||||
queries[i] = distrib(rng);
|
||||
}
|
||||
|
||||
std::vector<faiss::idx_t> gt_nns(nq);
|
||||
std::vector<float> gt_dis(nq);
|
||||
|
||||
index_gt.search(nq, queries.data(), 1, gt_dis.data(), gt_nns.data());
|
||||
|
||||
index.nprobe = 5;
|
||||
int k = 5;
|
||||
std::vector<faiss::idx_t> nns(k * nq);
|
||||
std::vector<float> dis(k * nq);
|
||||
|
||||
index.search(nq, queries.data(), k, dis.data(), nns.data());
|
||||
|
||||
n_ok = 0;
|
||||
for (int q = 0; q < nq; q++) {
|
||||
for (int i = 0; i < k; i++)
|
||||
if (nns[q * k + i] == gt_nns[q])
|
||||
n_ok++;
|
||||
}
|
||||
EXPECT_GT(n_ok, nq * 0.4);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user