Initial commit
This commit is contained in:
120
packages/leann-backend-hnsw/third_party/faiss/tutorial/cpp/4-GPU.cpp
vendored
Normal file
120
packages/leann-backend-hnsw/third_party/faiss/tutorial/cpp/4-GPU.cpp
vendored
Normal file
@@ -0,0 +1,120 @@
|
||||
/*
|
||||
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
*
|
||||
* This source code is licensed under the MIT license found in the
|
||||
* LICENSE file in the root directory of this source tree.
|
||||
*/
|
||||
|
||||
#include <cassert>
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <random>
|
||||
|
||||
#include <faiss/IndexFlat.h>
|
||||
#include <faiss/gpu/GpuIndexFlat.h>
|
||||
#include <faiss/gpu/GpuIndexIVFFlat.h>
|
||||
#include <faiss/gpu/StandardGpuResources.h>
|
||||
|
||||
int main() {
|
||||
int d = 64; // dimension
|
||||
int nb = 100000; // database size
|
||||
int nq = 10000; // nb of queries
|
||||
|
||||
std::mt19937 rng;
|
||||
std::uniform_real_distribution<> distrib;
|
||||
|
||||
float* xb = new float[d * nb];
|
||||
float* xq = new float[d * nq];
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
for (int j = 0; j < d; j++)
|
||||
xb[d * i + j] = distrib(rng);
|
||||
xb[d * i] += i / 1000.;
|
||||
}
|
||||
|
||||
for (int i = 0; i < nq; i++) {
|
||||
for (int j = 0; j < d; j++)
|
||||
xq[d * i + j] = distrib(rng);
|
||||
xq[d * i] += i / 1000.;
|
||||
}
|
||||
|
||||
faiss::gpu::StandardGpuResources res;
|
||||
|
||||
// Using a flat index
|
||||
|
||||
faiss::gpu::GpuIndexFlatL2 index_flat(&res, d);
|
||||
|
||||
printf("is_trained = %s\n", index_flat.is_trained ? "true" : "false");
|
||||
index_flat.add(nb, xb); // add vectors to the index
|
||||
printf("ntotal = %ld\n", index_flat.ntotal);
|
||||
|
||||
int k = 4;
|
||||
|
||||
{ // search xq
|
||||
long* I = new long[k * nq];
|
||||
float* D = new float[k * nq];
|
||||
|
||||
index_flat.search(nq, xq, k, D, I);
|
||||
|
||||
// print results
|
||||
printf("I (5 first results)=\n");
|
||||
for (int i = 0; i < 5; i++) {
|
||||
for (int j = 0; j < k; j++)
|
||||
printf("%5ld ", I[i * k + j]);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
printf("I (5 last results)=\n");
|
||||
for (int i = nq - 5; i < nq; i++) {
|
||||
for (int j = 0; j < k; j++)
|
||||
printf("%5ld ", I[i * k + j]);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
delete[] I;
|
||||
delete[] D;
|
||||
}
|
||||
|
||||
// Using an IVF index
|
||||
|
||||
int nlist = 100;
|
||||
faiss::gpu::GpuIndexIVFFlat index_ivf(&res, d, nlist, faiss::METRIC_L2);
|
||||
|
||||
assert(!index_ivf.is_trained);
|
||||
index_ivf.train(nb, xb);
|
||||
assert(index_ivf.is_trained);
|
||||
index_ivf.add(nb, xb); // add vectors to the index
|
||||
|
||||
printf("is_trained = %s\n", index_ivf.is_trained ? "true" : "false");
|
||||
printf("ntotal = %ld\n", index_ivf.ntotal);
|
||||
|
||||
{ // search xq
|
||||
long* I = new long[k * nq];
|
||||
float* D = new float[k * nq];
|
||||
|
||||
index_ivf.search(nq, xq, k, D, I);
|
||||
|
||||
// print results
|
||||
printf("I (5 first results)=\n");
|
||||
for (int i = 0; i < 5; i++) {
|
||||
for (int j = 0; j < k; j++)
|
||||
printf("%5ld ", I[i * k + j]);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
printf("I (5 last results)=\n");
|
||||
for (int i = nq - 5; i < nq; i++) {
|
||||
for (int j = 0; j < k; j++)
|
||||
printf("%5ld ", I[i * k + j]);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
delete[] I;
|
||||
delete[] D;
|
||||
}
|
||||
|
||||
delete[] xb;
|
||||
delete[] xq;
|
||||
|
||||
return 0;
|
||||
}
|
||||
Reference in New Issue
Block a user