Initial commit
This commit is contained in:
29
packages/leann-backend-hnsw/third_party/faiss/tutorial/python/1-Flat.py
vendored
Normal file
29
packages/leann-backend-hnsw/third_party/faiss/tutorial/python/1-Flat.py
vendored
Normal file
@@ -0,0 +1,29 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
#
|
||||
# This source code is licensed under the MIT license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import numpy as np
|
||||
|
||||
d = 64 # dimension
|
||||
nb = 100000 # database size
|
||||
nq = 10000 # nb of queries
|
||||
np.random.seed(1234) # make reproducible
|
||||
xb = np.random.random((nb, d)).astype('float32')
|
||||
xb[:, 0] += np.arange(nb) / 1000.
|
||||
xq = np.random.random((nq, d)).astype('float32')
|
||||
xq[:, 0] += np.arange(nq) / 1000.
|
||||
|
||||
import faiss # make faiss available
|
||||
index = faiss.IndexFlatL2(d) # build the index
|
||||
print(index.is_trained)
|
||||
index.add(xb) # add vectors to the index
|
||||
print(index.ntotal)
|
||||
|
||||
k = 4 # we want to see 4 nearest neighbors
|
||||
D, I = index.search(xb[:5], k) # sanity check
|
||||
print(I)
|
||||
print(D)
|
||||
D, I = index.search(xq, k) # actual search
|
||||
print(I[:5]) # neighbors of the 5 first queries
|
||||
print(I[-5:]) # neighbors of the 5 last queries
|
||||
Reference in New Issue
Block a user