Initial commit
This commit is contained in:
34
packages/leann-backend-hnsw/third_party/faiss/tutorial/python/2-IVFFlat.py
vendored
Normal file
34
packages/leann-backend-hnsw/third_party/faiss/tutorial/python/2-IVFFlat.py
vendored
Normal file
@@ -0,0 +1,34 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
#
|
||||
# This source code is licensed under the MIT license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import numpy as np
|
||||
|
||||
d = 64 # dimension
|
||||
nb = 100000 # database size
|
||||
nq = 10000 # nb of queries
|
||||
np.random.seed(1234) # make reproducible
|
||||
xb = np.random.random((nb, d)).astype('float32')
|
||||
xb[:, 0] += np.arange(nb) / 1000.
|
||||
xq = np.random.random((nq, d)).astype('float32')
|
||||
xq[:, 0] += np.arange(nq) / 1000.
|
||||
|
||||
import faiss
|
||||
|
||||
nlist = 100
|
||||
k = 4
|
||||
quantizer = faiss.IndexFlatL2(d) # the other index
|
||||
index = faiss.IndexIVFFlat(quantizer, d, nlist, faiss.METRIC_L2)
|
||||
# here we specify METRIC_L2, by default it performs inner-product search
|
||||
|
||||
assert not index.is_trained
|
||||
index.train(xb)
|
||||
assert index.is_trained
|
||||
|
||||
index.add(xb) # add may be a bit slower as well
|
||||
D, I = index.search(xq, k) # actual search
|
||||
print(I[-5:]) # neighbors of the 5 last queries
|
||||
index.nprobe = 10 # default nprobe is 1, try a few more
|
||||
D, I = index.search(xq, k)
|
||||
print(I[-5:]) # neighbors of the 5 last queries
|
||||
Reference in New Issue
Block a user