Initial commit
This commit is contained in:
57
packages/leann-backend-hnsw/third_party/faiss/tutorial/python/4-GPU.py
vendored
Normal file
57
packages/leann-backend-hnsw/third_party/faiss/tutorial/python/4-GPU.py
vendored
Normal file
@@ -0,0 +1,57 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
#
|
||||
# This source code is licensed under the MIT license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import numpy as np
|
||||
|
||||
d = 64 # dimension
|
||||
nb = 100000 # database size
|
||||
nq = 10000 # nb of queries
|
||||
np.random.seed(1234) # make reproducible
|
||||
xb = np.random.random((nb, d)).astype('float32')
|
||||
xb[:, 0] += np.arange(nb) / 1000.
|
||||
xq = np.random.random((nq, d)).astype('float32')
|
||||
xq[:, 0] += np.arange(nq) / 1000.
|
||||
|
||||
import faiss # make faiss available
|
||||
|
||||
res = faiss.StandardGpuResources() # use a single GPU
|
||||
|
||||
## Using a flat index
|
||||
|
||||
index_flat = faiss.IndexFlatL2(d) # build a flat (CPU) index
|
||||
|
||||
# make it a flat GPU index
|
||||
gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, index_flat)
|
||||
|
||||
gpu_index_flat.add(xb) # add vectors to the index
|
||||
print(gpu_index_flat.ntotal)
|
||||
|
||||
k = 4 # we want to see 4 nearest neighbors
|
||||
D, I = gpu_index_flat.search(xq, k) # actual search
|
||||
print(I[:5]) # neighbors of the 5 first queries
|
||||
print(I[-5:]) # neighbors of the 5 last queries
|
||||
|
||||
|
||||
## Using an IVF index
|
||||
|
||||
nlist = 100
|
||||
quantizer = faiss.IndexFlatL2(d) # the other index
|
||||
index_ivf = faiss.IndexIVFFlat(quantizer, d, nlist, faiss.METRIC_L2)
|
||||
# here we specify METRIC_L2, by default it performs inner-product search
|
||||
|
||||
# make it an IVF GPU index
|
||||
gpu_index_ivf = faiss.index_cpu_to_gpu(res, 0, index_ivf)
|
||||
|
||||
assert not gpu_index_ivf.is_trained
|
||||
gpu_index_ivf.train(xb) # add vectors to the index
|
||||
assert gpu_index_ivf.is_trained
|
||||
|
||||
gpu_index_ivf.add(xb) # add vectors to the index
|
||||
print(gpu_index_ivf.ntotal)
|
||||
|
||||
k = 4 # we want to see 4 nearest neighbors
|
||||
D, I = gpu_index_ivf.search(xq, k) # actual search
|
||||
print(I[:5]) # neighbors of the 5 first queries
|
||||
print(I[-5:]) # neighbors of the 5 last queries
|
||||
Reference in New Issue
Block a user