Initial commit
This commit is contained in:
35
packages/leann-backend-hnsw/third_party/faiss/tutorial/python/7-PQFastScan.py
vendored
Normal file
35
packages/leann-backend-hnsw/third_party/faiss/tutorial/python/7-PQFastScan.py
vendored
Normal file
@@ -0,0 +1,35 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
#
|
||||
# This source code is licensed under the MIT license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import faiss
|
||||
import numpy as np
|
||||
|
||||
d = 64 # dimension
|
||||
nb = 100000 # database size
|
||||
nq = 10000 # nb of queries
|
||||
np.random.seed(1234) # make reproducible
|
||||
xb = np.random.random((nb, d)).astype('float32') # 64-dim *nb queries
|
||||
xb[:, 0] += np.arange(nb) / 1000.
|
||||
xq = np.random.random((nq, d)).astype('float32')
|
||||
xq[:, 0] += np.arange(nq) / 1000.
|
||||
|
||||
m = 8 # 8 specifies that the number of sub-vector is 8
|
||||
k = 4 # number of dimension in etracted vector
|
||||
n_bit = 4 # 4 specifies that each sub-vector is encoded as 4 bits
|
||||
bbs = 32 # build block size ( bbs % 32 == 0 ) for PQ
|
||||
index = faiss.IndexPQFastScan(d, m, n_bit, faiss.METRIC_L2, bbs)
|
||||
# construct FastScan Index
|
||||
|
||||
assert not index.is_trained
|
||||
index.train(xb) # Train vectors data index within mockup database
|
||||
assert index.is_trained
|
||||
|
||||
index.add(xb)
|
||||
D, I = index.search(xb[:5], k) # sanity check
|
||||
print(I)
|
||||
print(D)
|
||||
index.nprobe = 10 # make comparable with experiment above
|
||||
D, I = index.search(xq, k) # search
|
||||
print(I[-5:]) # neighbors of the 5 last queries
|
||||
Reference in New Issue
Block a user