From 558126c46ecbc4f99bdfa515affbf1c0de815367 Mon Sep 17 00:00:00 2001 From: yichuan520030910320 Date: Wed, 9 Jul 2025 16:27:11 -0700 Subject: [PATCH] add leann and llamaindex email infra, and need to align the results --- examples/mail_reader_leann.py | 121 ++++++++++++++++++ ..._metadata.py => mail_reader_llamaindex.py} | 9 +- 2 files changed, 128 insertions(+), 2 deletions(-) create mode 100644 examples/mail_reader_leann.py rename examples/{mail_reader_embedded_metadata.py => mail_reader_llamaindex.py} (96%) diff --git a/examples/mail_reader_leann.py b/examples/mail_reader_leann.py new file mode 100644 index 0000000..a5a0ca0 --- /dev/null +++ b/examples/mail_reader_leann.py @@ -0,0 +1,121 @@ +import os +import asyncio +import dotenv +from pathlib import Path +from typing import List, Any +from leann.api import LeannBuilder, LeannSearcher, LeannChat +from mail_reader_llamaindex import EmlxReader +from llama_index.core.node_parser import SentenceSplitter + +dotenv.load_dotenv() + +def create_leann_index(mail_path: str, index_path: str = "mail_index.leann", max_count: int = 1000): + """ + Create LEANN index from mail data. + + Args: + mail_path: Path to the mail directory + index_path: Path to save the LEANN index + max_count: Maximum number of emails to process + """ + print("Creating LEANN index from mail data...") + + # Load documents using EmlxReader from mail_reader_llamaindex + reader = EmlxReader() + documents = reader.load_data(mail_path, max_count=max_count) + + if not documents: + print("No documents loaded. Exiting.") + return None + + print(f"Loaded {len(documents)} email documents") + + # Create text splitter with 256 chunk size + text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25) + + # Convert Documents to text strings and chunk them + all_texts = [] + for doc in documents: + # Split the document into chunks + nodes = text_splitter.get_nodes_from_documents([doc]) + for node in nodes: + all_texts.append(node.get_content()) + + print(f"Created {len(all_texts)} text chunks from {len(documents)} documents") + + # Create LEANN index directory + INDEX_DIR = Path(index_path).parent + + if not INDEX_DIR.exists(): + print(f"--- Index directory not found, building new index ---") + INDEX_DIR.mkdir(exist_ok=True) + + print(f"--- Building new LEANN index ---") + + print(f"\n[PHASE 1] Building Leann index...") + + # Use HNSW backend for better macOS compatibility + builder = LeannBuilder( + backend_name="hnsw", + embedding_model="facebook/contriever", + graph_degree=32, + complexity=64, + is_compact=True, + is_recompute=True, + num_threads=1 # Force single-threaded mode + ) + + print(f"Adding {len(all_texts)} email chunks to index...") + for chunk_text in all_texts: + builder.add_text(chunk_text) + + builder.build_index(index_path) + print(f"\nLEANN index built at {index_path}!") + else: + print(f"--- Using existing index at {INDEX_DIR} ---") + + return index_path + +async def query_leann_index(index_path: str, query: str): + """ + Query the LEANN index. + + Args: + index_path: Path to the LEANN index + query: The query string + """ + print(f"\n[PHASE 2] Starting Leann chat session...") + chat = LeannChat(index_path=index_path) + + print(f"You: {query}") + chat_response = chat.ask( + query, + top_k=5, + recompute_beighbor_embeddings=True, + complexity=32, + beam_width=1 + ) + print(f"Leann: {chat_response}") + +async def main(): + mail_path = "/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data/9/Messages" + + INDEX_DIR = Path("./mail_index_leann") + INDEX_PATH = str(INDEX_DIR / "mail_documents.leann") + + # Create or load the LEANN index + index_path = create_leann_index(mail_path, INDEX_PATH, max_count=1000) + + if index_path: + # Example queries + queries = [ + "Hows Berkeley Graduate Student Instructor", + "how's the icloud related advertisement saying" + ] + + for query in queries: + print("\n" + "="*60) + await query_leann_index(index_path, query) + +if __name__ == "__main__": + asyncio.run(main()) \ No newline at end of file diff --git a/examples/mail_reader_embedded_metadata.py b/examples/mail_reader_llamaindex.py similarity index 96% rename from examples/mail_reader_embedded_metadata.py rename to examples/mail_reader_llamaindex.py index 741c620..15ea206 100644 --- a/examples/mail_reader_embedded_metadata.py +++ b/examples/mail_reader_llamaindex.py @@ -122,10 +122,15 @@ def create_and_save_index(mail_path: str, save_dir: str = "mail_index_embedded", # Create text splitter with small chunk size (no metadata constraints) text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25) - # Create index + # Create index with Facebook Contriever embedding model + from llama_index.embeddings.huggingface import HuggingFaceEmbedding + + embed_model = HuggingFaceEmbedding(model_name="facebook/contriever") + index = VectorStoreIndex.from_documents( documents, - transformations=[text_splitter] + transformations=[text_splitter], + embed_model=embed_model ) # Save the index