fix readme

This commit is contained in:
yichuan-w
2025-10-08 21:38:55 +00:00
parent 3ec5e8d035
commit 5be0c144ad
72 changed files with 16608 additions and 4175 deletions

View File

@@ -5,6 +5,8 @@ import os
import struct
import sys
import time
from dataclasses import dataclass
from typing import Any, Optional
import numpy as np
@@ -237,6 +239,288 @@ def write_compact_format(
f_out.write(storage_data)
@dataclass
class HNSWComponents:
original_hnsw_data: dict[str, Any]
assign_probas_np: np.ndarray
cum_nneighbor_per_level_np: np.ndarray
levels_np: np.ndarray
is_compact: bool
compact_level_ptr: Optional[np.ndarray] = None
compact_node_offsets_np: Optional[np.ndarray] = None
compact_neighbors_data: Optional[list[int]] = None
offsets_np: Optional[np.ndarray] = None
neighbors_np: Optional[np.ndarray] = None
storage_fourcc: int = NULL_INDEX_FOURCC
storage_data: bytes = b""
def _read_hnsw_structure(f) -> HNSWComponents:
original_hnsw_data: dict[str, Any] = {}
hnsw_index_fourcc = read_struct(f, "<I")
if hnsw_index_fourcc not in EXPECTED_HNSW_FOURCCS:
raise ValueError(
f"Unexpected HNSW FourCC: {hnsw_index_fourcc:08x}. Expected one of {EXPECTED_HNSW_FOURCCS}."
)
original_hnsw_data["index_fourcc"] = hnsw_index_fourcc
original_hnsw_data["d"] = read_struct(f, "<i")
original_hnsw_data["ntotal"] = read_struct(f, "<q")
original_hnsw_data["dummy1"] = read_struct(f, "<q")
original_hnsw_data["dummy2"] = read_struct(f, "<q")
original_hnsw_data["is_trained"] = read_struct(f, "?")
original_hnsw_data["metric_type"] = read_struct(f, "<i")
original_hnsw_data["metric_arg"] = 0.0
if original_hnsw_data["metric_type"] > 1:
original_hnsw_data["metric_arg"] = read_struct(f, "<f")
assign_probas_np = read_numpy_vector(f, np.float64, "d")
cum_nneighbor_per_level_np = read_numpy_vector(f, np.int32, "i")
levels_np = read_numpy_vector(f, np.int32, "i")
ntotal = len(levels_np)
if ntotal != original_hnsw_data["ntotal"]:
original_hnsw_data["ntotal"] = ntotal
pos_before_compact = f.tell()
is_compact_flag = None
try:
is_compact_flag = read_struct(f, "<?")
except EOFError:
is_compact_flag = None
if is_compact_flag:
compact_level_ptr = read_numpy_vector(f, np.uint64, "Q")
compact_node_offsets_np = read_numpy_vector(f, np.uint64, "Q")
original_hnsw_data["entry_point"] = read_struct(f, "<i")
original_hnsw_data["max_level"] = read_struct(f, "<i")
original_hnsw_data["efConstruction"] = read_struct(f, "<i")
original_hnsw_data["efSearch"] = read_struct(f, "<i")
original_hnsw_data["dummy_upper_beam"] = read_struct(f, "<i")
storage_fourcc = read_struct(f, "<I")
compact_neighbors_data_np = read_numpy_vector(f, np.int32, "i")
compact_neighbors_data = compact_neighbors_data_np.tolist()
storage_data = f.read()
return HNSWComponents(
original_hnsw_data=original_hnsw_data,
assign_probas_np=assign_probas_np,
cum_nneighbor_per_level_np=cum_nneighbor_per_level_np,
levels_np=levels_np,
is_compact=True,
compact_level_ptr=compact_level_ptr,
compact_node_offsets_np=compact_node_offsets_np,
compact_neighbors_data=compact_neighbors_data,
storage_fourcc=storage_fourcc,
storage_data=storage_data,
)
# Non-compact case
f.seek(pos_before_compact)
pos_before_probe = f.tell()
try:
suspected_flag = read_struct(f, "<B")
if suspected_flag != 0x00:
f.seek(pos_before_probe)
except EOFError:
f.seek(pos_before_probe)
offsets_np = read_numpy_vector(f, np.uint64, "Q")
neighbors_np = read_numpy_vector(f, np.int32, "i")
original_hnsw_data["entry_point"] = read_struct(f, "<i")
original_hnsw_data["max_level"] = read_struct(f, "<i")
original_hnsw_data["efConstruction"] = read_struct(f, "<i")
original_hnsw_data["efSearch"] = read_struct(f, "<i")
original_hnsw_data["dummy_upper_beam"] = read_struct(f, "<i")
storage_fourcc = NULL_INDEX_FOURCC
storage_data = b""
try:
storage_fourcc = read_struct(f, "<I")
storage_data = f.read()
except EOFError:
storage_fourcc = NULL_INDEX_FOURCC
return HNSWComponents(
original_hnsw_data=original_hnsw_data,
assign_probas_np=assign_probas_np,
cum_nneighbor_per_level_np=cum_nneighbor_per_level_np,
levels_np=levels_np,
is_compact=False,
offsets_np=offsets_np,
neighbors_np=neighbors_np,
storage_fourcc=storage_fourcc,
storage_data=storage_data,
)
def _read_hnsw_structure_from_file(path: str) -> HNSWComponents:
with open(path, "rb") as f:
return _read_hnsw_structure(f)
def write_original_format(
f_out,
original_hnsw_data,
assign_probas_np,
cum_nneighbor_per_level_np,
levels_np,
offsets_np,
neighbors_np,
storage_fourcc,
storage_data,
):
"""Write non-compact HNSW data in original FAISS order."""
f_out.write(struct.pack("<I", original_hnsw_data["index_fourcc"]))
f_out.write(struct.pack("<i", original_hnsw_data["d"]))
f_out.write(struct.pack("<q", original_hnsw_data["ntotal"]))
f_out.write(struct.pack("<q", original_hnsw_data["dummy1"]))
f_out.write(struct.pack("<q", original_hnsw_data["dummy2"]))
f_out.write(struct.pack("<?", original_hnsw_data["is_trained"]))
f_out.write(struct.pack("<i", original_hnsw_data["metric_type"]))
if original_hnsw_data["metric_type"] > 1:
f_out.write(struct.pack("<f", original_hnsw_data["metric_arg"]))
write_numpy_vector(f_out, assign_probas_np, "d")
write_numpy_vector(f_out, cum_nneighbor_per_level_np, "i")
write_numpy_vector(f_out, levels_np, "i")
write_numpy_vector(f_out, offsets_np, "Q")
write_numpy_vector(f_out, neighbors_np, "i")
f_out.write(struct.pack("<i", original_hnsw_data["entry_point"]))
f_out.write(struct.pack("<i", original_hnsw_data["max_level"]))
f_out.write(struct.pack("<i", original_hnsw_data["efConstruction"]))
f_out.write(struct.pack("<i", original_hnsw_data["efSearch"]))
f_out.write(struct.pack("<i", original_hnsw_data["dummy_upper_beam"]))
f_out.write(struct.pack("<I", storage_fourcc))
if storage_fourcc != NULL_INDEX_FOURCC and storage_data:
f_out.write(storage_data)
def prune_hnsw_embeddings(input_filename: str, output_filename: str) -> bool:
"""Rewrite an HNSW index while dropping the embedded storage section."""
start_time = time.time()
try:
with open(input_filename, "rb") as f_in, open(output_filename, "wb") as f_out:
original_hnsw_data: dict[str, Any] = {}
hnsw_index_fourcc = read_struct(f_in, "<I")
if hnsw_index_fourcc not in EXPECTED_HNSW_FOURCCS:
print(
f"Error: Expected HNSW Index FourCC ({list(EXPECTED_HNSW_FOURCCS)}), got {hnsw_index_fourcc:08x}.",
file=sys.stderr,
)
return False
original_hnsw_data["index_fourcc"] = hnsw_index_fourcc
original_hnsw_data["d"] = read_struct(f_in, "<i")
original_hnsw_data["ntotal"] = read_struct(f_in, "<q")
original_hnsw_data["dummy1"] = read_struct(f_in, "<q")
original_hnsw_data["dummy2"] = read_struct(f_in, "<q")
original_hnsw_data["is_trained"] = read_struct(f_in, "?")
original_hnsw_data["metric_type"] = read_struct(f_in, "<i")
original_hnsw_data["metric_arg"] = 0.0
if original_hnsw_data["metric_type"] > 1:
original_hnsw_data["metric_arg"] = read_struct(f_in, "<f")
assign_probas_np = read_numpy_vector(f_in, np.float64, "d")
cum_nneighbor_per_level_np = read_numpy_vector(f_in, np.int32, "i")
levels_np = read_numpy_vector(f_in, np.int32, "i")
ntotal = len(levels_np)
if ntotal != original_hnsw_data["ntotal"]:
original_hnsw_data["ntotal"] = ntotal
pos_before_compact = f_in.tell()
is_compact_flag = None
try:
is_compact_flag = read_struct(f_in, "<?")
except EOFError:
is_compact_flag = None
if is_compact_flag:
compact_level_ptr = read_numpy_vector(f_in, np.uint64, "Q")
compact_node_offsets_np = read_numpy_vector(f_in, np.uint64, "Q")
original_hnsw_data["entry_point"] = read_struct(f_in, "<i")
original_hnsw_data["max_level"] = read_struct(f_in, "<i")
original_hnsw_data["efConstruction"] = read_struct(f_in, "<i")
original_hnsw_data["efSearch"] = read_struct(f_in, "<i")
original_hnsw_data["dummy_upper_beam"] = read_struct(f_in, "<i")
_storage_fourcc = read_struct(f_in, "<I")
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, "i")
compact_neighbors_data = compact_neighbors_data_np.tolist()
_storage_data = f_in.read()
write_compact_format(
f_out,
original_hnsw_data,
assign_probas_np,
cum_nneighbor_per_level_np,
levels_np,
compact_level_ptr,
compact_node_offsets_np,
compact_neighbors_data,
NULL_INDEX_FOURCC,
b"",
)
else:
f_in.seek(pos_before_compact)
pos_before_probe = f_in.tell()
try:
suspected_flag = read_struct(f_in, "<B")
if suspected_flag != 0x00:
f_in.seek(pos_before_probe)
except EOFError:
f_in.seek(pos_before_probe)
offsets_np = read_numpy_vector(f_in, np.uint64, "Q")
neighbors_np = read_numpy_vector(f_in, np.int32, "i")
original_hnsw_data["entry_point"] = read_struct(f_in, "<i")
original_hnsw_data["max_level"] = read_struct(f_in, "<i")
original_hnsw_data["efConstruction"] = read_struct(f_in, "<i")
original_hnsw_data["efSearch"] = read_struct(f_in, "<i")
original_hnsw_data["dummy_upper_beam"] = read_struct(f_in, "<i")
_storage_fourcc = None
_storage_data = b""
try:
_storage_fourcc = read_struct(f_in, "<I")
_storage_data = f_in.read()
except EOFError:
_storage_fourcc = NULL_INDEX_FOURCC
write_original_format(
f_out,
original_hnsw_data,
assign_probas_np,
cum_nneighbor_per_level_np,
levels_np,
offsets_np,
neighbors_np,
NULL_INDEX_FOURCC,
b"",
)
print(f"[{time.time() - start_time:.2f}s] Pruned embeddings from {input_filename}")
return True
except Exception as exc:
print(f"Failed to prune embeddings: {exc}", file=sys.stderr)
return False
# --- Main Conversion Logic ---
@@ -700,6 +984,29 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
pass
def prune_hnsw_embeddings_inplace(index_filename: str) -> bool:
"""Convenience wrapper to prune embeddings in-place."""
temp_path = f"{index_filename}.prune.tmp"
success = prune_hnsw_embeddings(index_filename, temp_path)
if success:
try:
os.replace(temp_path, index_filename)
except Exception as exc: # pragma: no cover - defensive
logger.error(f"Failed to replace original index with pruned version: {exc}")
try:
os.remove(temp_path)
except OSError:
pass
return False
else:
try:
os.remove(temp_path)
except OSError:
pass
return success
# --- Script Execution ---
if __name__ == "__main__":
parser = argparse.ArgumentParser(