Introducing dynamic index update (#108)

* feat: Add GitHub PR and issue templates for better contributor experience

* simplify: Make templates more concise and user-friendly

* fix: enable is_compact=False, is_recompute=True

* feat: update when recompute

* test

* fix: real recompute

* refactor

* fix: compare with no-recompute

* fix: test
This commit is contained in:
Andy Lee
2025-09-21 22:56:27 -07:00
committed by GitHub
parent d034e2195b
commit 5f7806e16f
8 changed files with 4563 additions and 3694 deletions

View File

@@ -15,6 +15,7 @@ from pathlib import Path
from typing import Any, Literal, Optional, Union
import numpy as np
from leann_backend_hnsw.convert_to_csr import prune_hnsw_embeddings_inplace
from leann.interface import LeannBackendSearcherInterface
@@ -476,9 +477,7 @@ class LeannBuilder:
is_compact = self.backend_kwargs.get("is_compact", True)
is_recompute = self.backend_kwargs.get("is_recompute", True)
meta_data["is_compact"] = is_compact
meta_data["is_pruned"] = (
is_compact and is_recompute
) # Pruned only if compact and recompute
meta_data["is_pruned"] = bool(is_recompute)
with open(leann_meta_path, "w", encoding="utf-8") as f:
json.dump(meta_data, f, indent=2)
@@ -598,13 +597,157 @@ class LeannBuilder:
is_compact = self.backend_kwargs.get("is_compact", True)
is_recompute = self.backend_kwargs.get("is_recompute", True)
meta_data["is_compact"] = is_compact
meta_data["is_pruned"] = is_compact and is_recompute
meta_data["is_pruned"] = bool(is_recompute)
with open(leann_meta_path, "w", encoding="utf-8") as f:
json.dump(meta_data, f, indent=2)
logger.info(f"Index built successfully from precomputed embeddings: {index_path}")
def update_index(self, index_path: str):
"""Append new passages and vectors to an existing HNSW index."""
if not self.chunks:
raise ValueError("No new chunks provided for update.")
path = Path(index_path)
index_dir = path.parent
index_name = path.name
index_prefix = path.stem
meta_path = index_dir / f"{index_name}.meta.json"
passages_file = index_dir / f"{index_name}.passages.jsonl"
offset_file = index_dir / f"{index_name}.passages.idx"
index_file = index_dir / f"{index_prefix}.index"
if not meta_path.exists() or not passages_file.exists() or not offset_file.exists():
raise FileNotFoundError("Index metadata or passage files are missing; cannot update.")
if not index_file.exists():
raise FileNotFoundError(f"HNSW index file not found: {index_file}")
with open(meta_path, encoding="utf-8") as f:
meta = json.load(f)
backend_name = meta.get("backend_name")
if backend_name != self.backend_name:
raise ValueError(
f"Index was built with backend '{backend_name}', cannot update with '{self.backend_name}'."
)
meta_backend_kwargs = meta.get("backend_kwargs", {})
index_is_compact = meta.get("is_compact", meta_backend_kwargs.get("is_compact", True))
if index_is_compact:
raise ValueError(
"Compact HNSW indices do not support in-place updates. Rebuild required."
)
distance_metric = meta_backend_kwargs.get(
"distance_metric", self.backend_kwargs.get("distance_metric", "mips")
).lower()
needs_recompute = bool(
meta.get("is_pruned")
or meta_backend_kwargs.get("is_recompute")
or self.backend_kwargs.get("is_recompute")
)
with open(offset_file, "rb") as f:
offset_map: dict[str, int] = pickle.load(f)
existing_ids = set(offset_map.keys())
valid_chunks: list[dict[str, Any]] = []
for chunk in self.chunks:
text = chunk.get("text", "")
if not isinstance(text, str) or not text.strip():
continue
metadata = chunk.setdefault("metadata", {})
passage_id = chunk.get("id") or metadata.get("id")
if passage_id and passage_id in existing_ids:
raise ValueError(f"Passage ID '{passage_id}' already exists in the index.")
valid_chunks.append(chunk)
if not valid_chunks:
raise ValueError("No valid chunks to append.")
texts_to_embed = [chunk["text"] for chunk in valid_chunks]
embeddings = compute_embeddings(
texts_to_embed,
self.embedding_model,
self.embedding_mode,
use_server=False,
is_build=True,
)
embedding_dim = embeddings.shape[1]
expected_dim = meta.get("dimensions")
if expected_dim is not None and expected_dim != embedding_dim:
raise ValueError(
f"Dimension mismatch during update: existing index uses {expected_dim}, got {embedding_dim}."
)
from leann_backend_hnsw import faiss # type: ignore
embeddings = np.ascontiguousarray(embeddings, dtype=np.float32)
if distance_metric == "cosine":
norms = np.linalg.norm(embeddings, axis=1, keepdims=True)
norms[norms == 0] = 1
embeddings = embeddings / norms
index = faiss.read_index(str(index_file))
if hasattr(index, "is_recompute"):
index.is_recompute = needs_recompute
if getattr(index, "storage", None) is None:
if index.metric_type == faiss.METRIC_INNER_PRODUCT:
storage_index = faiss.IndexFlatIP(index.d)
else:
storage_index = faiss.IndexFlatL2(index.d)
index.storage = storage_index
index.own_fields = True
if index.d != embedding_dim:
raise ValueError(
f"Existing index dimension ({index.d}) does not match new embeddings ({embedding_dim})."
)
base_id = index.ntotal
for offset, chunk in enumerate(valid_chunks):
new_id = str(base_id + offset)
chunk.setdefault("metadata", {})["id"] = new_id
chunk["id"] = new_id
index.add(embeddings.shape[0], faiss.swig_ptr(embeddings))
faiss.write_index(index, str(index_file))
with open(passages_file, "a", encoding="utf-8") as f:
for chunk in valid_chunks:
offset = f.tell()
json.dump(
{
"id": chunk["id"],
"text": chunk["text"],
"metadata": chunk.get("metadata", {}),
},
f,
ensure_ascii=False,
)
f.write("\n")
offset_map[chunk["id"]] = offset
with open(offset_file, "wb") as f:
pickle.dump(offset_map, f)
meta["total_passages"] = len(offset_map)
with open(meta_path, "w", encoding="utf-8") as f:
json.dump(meta, f, indent=2)
logger.info(
"Appended %d passages to index '%s'. New total: %d",
len(valid_chunks),
index_path,
len(offset_map),
)
self.chunks.clear()
if needs_recompute:
prune_hnsw_embeddings_inplace(str(index_file))
class LeannSearcher:
def __init__(self, index_path: str, enable_warmup: bool = False, **backend_kwargs):