fixing chunking token issues within limit for embedding models

This commit is contained in:
aakash
2025-10-26 18:53:53 -07:00
parent a85d0ad4a7
commit 64b92a04a7
4 changed files with 270 additions and 24 deletions

View File

@@ -14,6 +14,89 @@ import torch
from .settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
def truncate_to_token_limit(texts: list[str], max_tokens: int = 512) -> list[str]:
"""
Truncate texts to token limit using tiktoken or conservative character truncation.
Args:
texts: List of texts to truncate
max_tokens: Maximum tokens allowed per text
Returns:
List of truncated texts that should fit within token limit
"""
try:
import tiktoken
encoder = tiktoken.get_encoding("cl100k_base")
truncated = []
for text in texts:
tokens = encoder.encode(text)
if len(tokens) > max_tokens:
# Truncate to max_tokens and decode back to text
truncated_tokens = tokens[:max_tokens]
truncated_text = encoder.decode(truncated_tokens)
truncated.append(truncated_text)
logger.warning(
f"Truncated text from {len(tokens)} to {max_tokens} tokens "
f"(from {len(text)} to {len(truncated_text)} characters)"
)
else:
truncated.append(text)
return truncated
except ImportError:
# Fallback: Conservative character truncation
# Assume worst case: 1.5 tokens per character for code content
char_limit = int(max_tokens / 1.5)
truncated = []
for text in texts:
if len(text) > char_limit:
truncated_text = text[:char_limit]
truncated.append(truncated_text)
logger.warning(
f"Truncated text from {len(text)} to {char_limit} characters "
f"(conservative estimate for {max_tokens} tokens)"
)
else:
truncated.append(text)
return truncated
def get_model_token_limit(model_name: str) -> int:
"""
Get token limit for a given embedding model.
Args:
model_name: Name of the embedding model
Returns:
Token limit for the model, defaults to 512 if unknown
"""
# Handle versioned model names (e.g., "nomic-embed-text:latest" -> "nomic-embed-text")
base_model_name = model_name.split(":")[0]
# Check exact match first
if model_name in EMBEDDING_MODEL_LIMITS:
return EMBEDDING_MODEL_LIMITS[model_name]
# Check base name match
if base_model_name in EMBEDDING_MODEL_LIMITS:
return EMBEDDING_MODEL_LIMITS[base_model_name]
# Check partial matches for common patterns
for known_model, limit in EMBEDDING_MODEL_LIMITS.items():
if known_model in base_model_name or base_model_name in known_model:
return limit
# Default to conservative 512 token limit
logger.warning(f"Unknown model '{model_name}', using default 512 token limit")
return 512
# Set up logger with proper level
logger = logging.getLogger(__name__)
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
@@ -23,6 +106,17 @@ logger.setLevel(log_level)
# Global model cache to avoid repeated loading
_model_cache: dict[str, Any] = {}
# Known embedding model token limits
EMBEDDING_MODEL_LIMITS = {
"nomic-embed-text": 512,
"nomic-embed-text-v2": 512,
"mxbai-embed-large": 512,
"all-minilm": 512,
"bge-m3": 8192,
"snowflake-arctic-embed": 512,
# Add more models as needed
}
def compute_embeddings(
texts: list[str],
@@ -720,20 +814,28 @@ def compute_embeddings_ollama(
logger.info(f"Using batch size: {batch_size} for true batch processing")
# Get model token limit and apply truncation
token_limit = get_model_token_limit(model_name)
logger.info(f"Model '{model_name}' token limit: {token_limit}")
# Apply token-aware truncation to all texts
truncated_texts = truncate_to_token_limit(texts, token_limit)
if len(truncated_texts) != len(texts):
logger.error("Truncation failed - text count mismatch")
truncated_texts = texts # Fallback to original texts
def get_batch_embeddings(batch_texts):
"""Get embeddings for a batch of texts using /api/embed endpoint."""
max_retries = 3
retry_count = 0
# Truncate very long texts to avoid API issues
truncated_texts = [text[:8000] if len(text) > 8000 else text for text in batch_texts]
# Texts are already truncated to token limit by the outer function
while retry_count < max_retries:
try:
# Use /api/embed endpoint with "input" parameter for batch processing
response = requests.post(
f"{resolved_host}/api/embed",
json={"model": model_name, "input": truncated_texts},
json={"model": model_name, "input": batch_texts},
timeout=60, # Increased timeout for batch processing
)
response.raise_for_status()
@@ -763,17 +865,27 @@ def compute_embeddings_ollama(
except Exception as e:
retry_count += 1
if retry_count >= max_retries:
logger.error(f"Failed to get embeddings for batch: {e}")
# Enhanced error detection for token limit violations
error_msg = str(e).lower()
if "token" in error_msg and (
"limit" in error_msg or "exceed" in error_msg or "length" in error_msg
):
logger.error(
f"Token limit exceeded for batch. Error: {e}. "
f"Consider reducing chunk sizes or check token truncation."
)
else:
logger.error(f"Failed to get embeddings for batch: {e}")
return None, list(range(len(batch_texts)))
return None, list(range(len(batch_texts)))
# Process texts in batches
# Process truncated texts in batches
all_embeddings = []
all_failed_indices = []
# Setup progress bar if needed
show_progress = is_build or len(texts) > 10
show_progress = is_build or len(truncated_texts) > 10
try:
if show_progress:
from tqdm import tqdm
@@ -781,7 +893,7 @@ def compute_embeddings_ollama(
show_progress = False
# Process batches
num_batches = (len(texts) + batch_size - 1) // batch_size
num_batches = (len(truncated_texts) + batch_size - 1) // batch_size
if show_progress:
batch_iterator = tqdm(range(num_batches), desc="Computing Ollama embeddings (batched)")
@@ -790,8 +902,8 @@ def compute_embeddings_ollama(
for batch_idx in batch_iterator:
start_idx = batch_idx * batch_size
end_idx = min(start_idx + batch_size, len(texts))
batch_texts = texts[start_idx:end_idx]
end_idx = min(start_idx + batch_size, len(truncated_texts))
batch_texts = truncated_texts[start_idx:end_idx]
batch_embeddings, batch_failed = get_batch_embeddings(batch_texts)
@@ -806,11 +918,11 @@ def compute_embeddings_ollama(
# Handle failed embeddings
if all_failed_indices:
if len(all_failed_indices) == len(texts):
if len(all_failed_indices) == len(truncated_texts):
raise RuntimeError("Failed to compute any embeddings")
logger.warning(
f"Failed to compute embeddings for {len(all_failed_indices)}/{len(texts)} texts"
f"Failed to compute embeddings for {len(all_failed_indices)}/{len(truncated_texts)} texts"
)
# Use zero embeddings as fallback for failed ones