diff --git a/examples/wechat_history_reader_leann.py b/examples/wechat_history_reader_leann.py index 971ea74..d002174 100644 --- a/examples/wechat_history_reader_leann.py +++ b/examples/wechat_history_reader_leann.py @@ -78,7 +78,7 @@ def create_leann_index_from_multiple_wechat_exports( ) # Create text splitter with 256 chunk size - text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=128) + text_splitter = SentenceSplitter(chunk_size=192, chunk_overlap=64) # Convert Documents to text strings and chunk them all_texts = [] diff --git a/packages/leann-core/src/leann/embedding_compute.py b/packages/leann-core/src/leann/embedding_compute.py index ce85055..14a21f8 100644 --- a/packages/leann-core/src/leann/embedding_compute.py +++ b/packages/leann-core/src/leann/embedding_compute.py @@ -101,7 +101,7 @@ def compute_embeddings_sentence_transformers( if device == "mps": batch_size = 128 # MPS optimal batch size from benchmark if model_name == "Qwen/Qwen3-Embedding-0.6B": - batch_size = 64 + batch_size = 32 elif device == "cuda": batch_size = 256 # CUDA optimal batch size # Keep original batch_size for CPU