fix: auto-detect normalized embeddings and use cosine distance
- Add automatic detection for normalized embedding models (OpenAI, Voyage AI, Cohere) - Automatically set distance_metric='cosine' for normalized embeddings - Add warnings when using non-optimal distance metrics - Implement manual L2 normalization in HNSW backend (custom Faiss build lacks normalize_L2) - Fix DiskANN zmq_port compatibility with lazy loading strategy - Add documentation for normalized embeddings feature This fixes the low accuracy issue when using OpenAI text-embedding-3-small model with default MIPS metric.
This commit is contained in:
@@ -28,6 +28,12 @@ def get_metric_map():
|
||||
}
|
||||
|
||||
|
||||
def normalize_l2(data: np.ndarray) -> np.ndarray:
|
||||
norms = np.linalg.norm(data, axis=1, keepdims=True)
|
||||
norms[norms == 0] = 1 # Avoid division by zero
|
||||
return data / norms
|
||||
|
||||
|
||||
@register_backend("hnsw")
|
||||
class HNSWBackend(LeannBackendFactoryInterface):
|
||||
@staticmethod
|
||||
@@ -76,7 +82,7 @@ class HNSWBuilder(LeannBackendBuilderInterface):
|
||||
index.hnsw.efConstruction = self.efConstruction
|
||||
|
||||
if self.distance_metric.lower() == "cosine":
|
||||
faiss.normalize_L2(data)
|
||||
data = normalize_l2(data)
|
||||
|
||||
index.add(data.shape[0], faiss.swig_ptr(data))
|
||||
index_file = index_dir / f"{index_prefix}.index"
|
||||
@@ -186,7 +192,7 @@ class HNSWSearcher(BaseSearcher):
|
||||
if query.dtype != np.float32:
|
||||
query = query.astype(np.float32)
|
||||
if self.distance_metric == "cosine":
|
||||
faiss.normalize_L2(query)
|
||||
query = normalize_l2(query)
|
||||
|
||||
params = faiss.SearchParametersHNSW()
|
||||
if zmq_port is not None:
|
||||
|
||||
Reference in New Issue
Block a user