feat: Add ColQwen multimodal PDF retrieval integration

- Add ColQwenRAG class with easy-to-use CLI for multimodal PDF retrieval
- Support for both ColQwen2 and ColPali models with automatic device selection
- MPS optimization for Apple Silicon with memory-efficient loading
- Complete pipeline: PDF→images→embeddings→HNSW index→search
- Multi-vector indexing for fine-grained document matching
- Comprehensive user guide and reproduction test script
- Resolves #119: ColQwen Doc and Support Management

Features:
- python -m apps.colqwen_rag build --pdfs ./pdfs/ --index my_index
- python -m apps.colqwen_rag search my_index "query text"
- python -m apps.colqwen_rag ask my_index --interactive
- Automatic CPU fallback for memory constraints
- Robust error handling and progress tracking
This commit is contained in:
aakash
2025-11-10 13:31:58 -08:00
parent dc6c9f696e
commit 9dd0e0b26f
3 changed files with 720 additions and 0 deletions

View File

@@ -0,0 +1,156 @@
#!/usr/bin/env python3
"""
Test script to reproduce ColQwen results from issue #119
https://github.com/yichuan-w/LEANN/issues/119
This script demonstrates the ColQwen workflow:
1. Download sample PDF
2. Convert to images
3. Build multimodal index
4. Run test queries
5. Generate similarity maps
"""
import os
from pathlib import Path
def main():
print("🧪 ColQwen Reproduction Test - Issue #119")
print("=" * 50)
# Check if we're in the right directory
repo_root = Path.cwd()
if not (repo_root / "apps" / "colqwen_rag.py").exists():
print("❌ Please run this script from the LEANN repository root")
print(" cd /path/to/LEANN && python test_colqwen_reproduction.py")
return
print("✅ Repository structure looks good")
# Step 1: Check dependencies
print("\n📦 Checking dependencies...")
try:
import pdf2image
import torch
from colpali_engine.models import ColQwen2
print("✅ Core dependencies available")
print(f" - PyTorch: {torch.__version__}")
print(f" - CUDA available: {torch.cuda.is_available()}")
print(
f" - MPS available: {hasattr(torch.backends, 'mps') and torch.backends.mps.is_available()}"
)
except ImportError as e:
print(f"❌ Missing dependency: {e}")
print("\n📥 Install missing dependencies:")
print(
" uv pip install colpali_engine pdf2image pillow matplotlib qwen_vl_utils einops seaborn"
)
return
# Step 2: Download sample PDF
print("\n📄 Setting up sample PDF...")
pdf_dir = repo_root / "test_pdfs"
pdf_dir.mkdir(exist_ok=True)
sample_pdf = pdf_dir / "attention_paper.pdf"
if not sample_pdf.exists():
print("📥 Downloading sample paper (Attention Is All You Need)...")
import urllib.request
try:
urllib.request.urlretrieve("https://arxiv.org/pdf/1706.03762.pdf", sample_pdf)
print(f"✅ Downloaded: {sample_pdf}")
except Exception as e:
print(f"❌ Download failed: {e}")
print(" Please manually download a PDF to test_pdfs/attention_paper.pdf")
return
else:
print(f"✅ Using existing PDF: {sample_pdf}")
# Step 3: Test ColQwen RAG
print("\n🚀 Testing ColQwen RAG...")
# Build index
print("\n1⃣ Building multimodal index...")
build_cmd = f"python -m apps.colqwen_rag build --pdfs {pdf_dir} --index test_attention --model colqwen2 --pages-dir test_pages"
print(f" Command: {build_cmd}")
try:
result = os.system(build_cmd)
if result == 0:
print("✅ Index built successfully!")
else:
print("❌ Index building failed")
return
except Exception as e:
print(f"❌ Error building index: {e}")
return
# Test search
print("\n2⃣ Testing search...")
test_queries = [
"How does attention mechanism work?",
"What is the transformer architecture?",
"How do you compute self-attention?",
]
for query in test_queries:
print(f"\n🔍 Query: '{query}'")
search_cmd = f'python -m apps.colqwen_rag search test_attention "{query}" --top-k 3'
print(f" Command: {search_cmd}")
try:
result = os.system(search_cmd)
if result == 0:
print("✅ Search completed")
else:
print("❌ Search failed")
except Exception as e:
print(f"❌ Search error: {e}")
# Test interactive mode (briefly)
print("\n3⃣ Testing interactive mode...")
print(" You can test interactive mode with:")
print(" python -m apps.colqwen_rag ask test_attention --interactive")
# Step 4: Test similarity maps (using existing script)
print("\n4⃣ Testing similarity maps...")
similarity_script = (
repo_root
/ "apps"
/ "multimodal"
/ "vision-based-pdf-multi-vector"
/ "multi-vector-leann-similarity-map.py"
)
if similarity_script.exists():
print(" You can generate similarity maps with:")
print(f" cd {similarity_script.parent}")
print(" python multi-vector-leann-similarity-map.py")
print(" (Edit the script to use your local PDF)")
print("\n🎉 ColQwen reproduction test completed!")
print("\n📋 Summary:")
print(" ✅ Dependencies checked")
print(" ✅ Sample PDF prepared")
print(" ✅ Index building tested")
print(" ✅ Search functionality tested")
print(" ✅ Interactive mode available")
print(" ✅ Similarity maps available")
print("\n🔗 Related repositories to check:")
print(" - https://github.com/lightonai/fast-plaid")
print(" - https://github.com/lightonai/pylate")
print(" - https://github.com/stanford-futuredata/ColBERT")
print("\n📝 Next steps:")
print(" 1. Test with your own PDFs")
print(" 2. Experiment with different queries")
print(" 3. Generate similarity maps for visual analysis")
print(" 4. Compare ColQwen2 vs ColPali performance")
if __name__ == "__main__":
main()