docs: data updated

This commit is contained in:
Andy Lee
2025-09-15 19:50:02 -07:00
parent d7011bbea0
commit a0d6857faa
9 changed files with 749 additions and 133 deletions

View File

@@ -1,18 +1,19 @@
# Enron Emails Benchmark
A retrieval-only benchmark for evaluating LEANN search on the Enron email corpus. It mirrors the structure and CLI of the existing FinanceBench and LAION benches, using stage-based evaluation focused on Recall@3.
A comprehensive RAG benchmark for evaluating LEANN search and generation on the Enron email corpus. It mirrors the structure and CLI of the existing FinanceBench and LAION benches, using stage-based evaluation with Recall@3 and generation timing.
- Dataset: Enron email CSV (e.g., Kaggle wcukierski/enron-email-dataset) for passages
- Queries: corbt/enron_emails_sample_questions (filtered for realistic questions)
- Metric: Recall@3 vs FAISS Flat baseline
- Metrics: Recall@3 vs FAISS Flat baseline + Generation evaluation with Qwen3-8B
## Layout
benchmarks/enron_emails/
- setup_enron_emails.py: Prepare passages, build LEANN index, build FAISS baseline
- evaluate_enron_emails.py: Evaluate retrieval recall (Stage 2)
- evaluate_enron_emails.py: Evaluate retrieval recall (Stages 2-5) + generation with Qwen3-8B
- data/: Generated passages, queries, embeddings-related files
- baseline/: FAISS Flat baseline files
- llm_utils.py: LLM utilities for Qwen3-8B generation (in parent directory)
## Quickstart
@@ -41,23 +42,33 @@ Stage 3 uses binary search over complexity to find the minimal value achieving t
4) Index comparison (Stage 4)
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 4 --max-queries 100 --output results.json
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 4 --complexity 88 --max-queries 100 --output results.json
5) Generation evaluation (Stage 5)
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 5 --complexity 88 --llm-backend hf --model-name Qwen/Qwen3-8B
6) Combined index + generation evaluation (Stages 4+5, recommended)
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 45 --complexity 88 --llm-backend hf
Notes:
- Minimal CLI: you can run from repo root with only `--index`, defaults match financebench/laion patterns:
- `--stage` defaults to `all` (runs 2, 3, 4)
- `--stage` defaults to `all` (runs 2, 3, 4, 5)
- `--baseline-dir` defaults to `baseline`
- `--queries` defaults to `data/evaluation_queries.jsonl` (or falls back to the index directory)
- `--llm-backend` defaults to `hf` (HuggingFace), can use `vllm`
- `--model-name` defaults to `Qwen/Qwen3-8B`
- Fail-fast behavior: no silent fallbacks. If compact index cannot run with recompute, it errors out.
4) Index comparison (Stage 4)
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 4 --max-queries 100 --output results.json
- Stage 5 requires Stage 4 retrieval results. Use `--stage 45` to run both efficiently.
Optional flags:
- --queries data/evaluation_queries.jsonl (custom queries file)
- --baseline-dir baseline (where FAISS baseline lives)
- --complexity 64 (LEANN complexity parameter)
- --complexity 88 (LEANN complexity parameter, optimal for 90% recall)
- --llm-backend hf|vllm (LLM backend for generation)
- --model-name Qwen/Qwen3-8B (LLM model for generation)
- --max-queries 1000 (limit number of queries for evaluation)
## Files Produced
- data/enron_passages_preview.jsonl: Small preview of passages used (for inspection)
@@ -66,8 +77,9 @@ Optional flags:
- data/evaluation_queries.jsonl: Query file (id + query; includes GT IDs for reference)
## Notes
- We only evaluate retrieval Recall@3 (no generation). This matches the other benches style and stage flow.
- Evaluates both retrieval Recall@3 and generation timing with Qwen3-8B thinking model.
- The emails CSV must contain a column named "message" (raw RFC822 email) and a column named "file" for source identifier. Message-ID headers are parsed as canonical message IDs when present.
- Qwen3-8B requires special handling for thinking models with chat templates and <think></think> tag processing.
## Stages Summary
@@ -80,16 +92,23 @@ Optional flags:
- Stage 4 (Index Comparison):
- Reports .index-only sizes for compact vs non-compact.
- Measures timings on 100 queries by default: non-compact (no recompute) vs compact (with recompute).
- Measures timings on queries by default: non-compact (no recompute) vs compact (with recompute).
- Stores retrieval results for Stage 5 generation evaluation.
- Fails fast if compact recompute cannot run.
- If `--complexity` is not provided, the script tries to use the best complexity from Stage 3:
- First from the current run (when running `--stage all`), otherwise
- From `enron_stage3_results.json` saved next to the index during the last Stage 3 run.
- If neither exists, Stage 4 will error and ask you to run Stage 3 or pass `--complexity`.
- Stage 5 (Generation Evaluation):
- Uses Qwen3-8B thinking model for RAG generation on retrieved documents from Stage 4.
- Supports HuggingFace (`hf`) and vLLM (`vllm`) backends.
- Measures generation timing separately from search timing.
- Requires Stage 4 results (no additional searching performed).
## Example Results
These are sample results obtained on a subset of Enron data using all-mpnet-base-v2.
These are sample results obtained on Enron data using all-mpnet-base-v2 and Qwen3-8B.
- Stage 3 (Binary Search):
- Minimal complexity achieving 90% Recall@3: 88
@@ -103,14 +122,20 @@ These are sample results obtained on a subset of Enron data using all-mpnet-base
- C=256 → 92.0% Recall@3
- Stage 4 (Index Sizes, .index only):
- Compact: ~2.17 MB
- Non-compact: ~82.03 MB
- Storage saving by compact: ~97.35%
- Compact: ~2.2 MB
- Non-compact: ~82.0 MB
- Storage saving by compact: ~97.3%
- Stage 4 (Timing, 100 queries, complexity=88):
- Non-compact (no recompute): ~0.0074 s avg per query
- Compact (with recompute): ~1.947 s avg per query
- Stage 4 (Search Timing, 988 queries, complexity=88):
- Non-compact (no recompute): ~0.0075 s avg per query
- Compact (with recompute): ~1.981 s avg per query
- Speed ratio (non-compact/compact): ~0.0038x
Full JSON output for Stage 4 is saved by the script (see `--output`), e.g.:
`benchmarks/enron_emails/results_enron_stage4.json`.
- Stage 5 (RAG Generation, 988 queries, Qwen3-8B):
- Average generation time: ~22.302 s per query
- Total queries processed: 988
- LLM backend: HuggingFace transformers
- Model: Qwen/Qwen3-8B (thinking model with <think></think> processing)
Full JSON output is saved by the script (see `--output`), e.g.:
`benchmarks/enron_emails/results_enron_stage45.json`.

View File

@@ -7,13 +7,22 @@ On errors, fail fast without fallbacks.
import argparse
import json
import logging
import os
import pickle
from pathlib import Path
import numpy as np
from leann import LeannBuilder, LeannSearcher
from leann_backend_hnsw import faiss
from ..llm_utils import generate_hf, generate_vllm, load_hf_model, load_vllm_model
# Setup logging to reduce verbose output
logging.basicConfig(level=logging.WARNING)
logging.getLogger("leann.api").setLevel(logging.WARNING)
logging.getLogger("leann_backend_hnsw").setLevel(logging.WARNING)
class RecallEvaluator:
"""Stage 2: Evaluate Recall@3 (LEANN vs FAISS)"""
@@ -119,7 +128,6 @@ class EnronEvaluator:
def analyze_index_sizes(self) -> dict:
"""Analyze index sizes (.index only), similar to LAION bench."""
from pathlib import Path
print("📏 Analyzing index sizes (.index only)...")
index_path = Path(self.index_path)
@@ -150,7 +158,6 @@ class EnronEvaluator:
def create_non_compact_index_for_comparison(self, non_compact_index_path: str) -> dict:
"""Create a non-compact index for comparison using current passages and embeddings."""
from pathlib import Path
current_index_path = Path(self.index_path)
current_index_dir = current_index_path.parent
@@ -230,6 +237,7 @@ class EnronEvaluator:
"compact": {"search_times": []},
"avg_search_times": {},
"speed_ratio": 0.0,
"retrieval_results": [], # Store retrieval results for Stage 5
}
print("⚡ Comparing search performance between indexes...")
@@ -248,10 +256,15 @@ class EnronEvaluator:
compact_searcher = LeannSearcher(compact_path)
for q in test_queries:
t0 = time.time()
_ = compact_searcher.search(
docs = compact_searcher.search(
q, top_k=3, complexity=complexity, recompute_embeddings=True
)
results["compact"]["search_times"].append(time.time() - t0)
# Store retrieval results for Stage 5
results["retrieval_results"].append(
{"query": q, "retrieved_docs": [{"id": doc.id, "text": doc.text} for doc in docs]}
)
compact_searcher.cleanup()
if results["non_compact"]["search_times"]:
@@ -358,9 +371,9 @@ def main():
)
parser.add_argument(
"--stage",
choices=["2", "3", "4", "all"],
choices=["2", "3", "4", "5", "all", "45"],
default="all",
help="Which stage to run (2=recall, 3=complexity, 4=index comparison)",
help="Which stage to run (2=recall, 3=complexity, 4=index comparison, 5=generation)",
)
parser.add_argument("--complexity", type=int, default=None, help="LEANN search complexity")
parser.add_argument("--baseline-dir", default="baseline", help="Baseline output directory")
@@ -371,6 +384,8 @@ def main():
"--target-recall", type=float, default=0.90, help="Target Recall@3 for Stage 3"
)
parser.add_argument("--output", help="Save results to JSON file")
parser.add_argument("--llm-backend", choices=["hf", "vllm"], default="hf", help="LLM backend")
parser.add_argument("--model-name", default="Qwen/Qwen3-8B", help="Model name")
args = parser.parse_args()
@@ -438,7 +453,7 @@ def main():
enron_eval.cleanup()
print("✅ Stage 3 completed!\n")
if args.stage in ("4", "all"):
if args.stage in ("4", "all", "45"):
print("🚀 Starting Stage 4: Index size + performance comparison")
evaluator = RecallEvaluator(args.index, args.baseline_dir)
enron_eval = EnronEvaluator(args.index)
@@ -503,6 +518,92 @@ def main():
enron_eval.cleanup()
print("✅ Stage 4 completed!\n")
if args.stage in ("5", "all"):
print("🚀 Starting Stage 5: Generation evaluation with Qwen3-8B")
# Check if Stage 4 results exist
if "stage4" not in results_out or "performance_comparison" not in results_out["stage4"]:
print("❌ Stage 5 requires Stage 4 retrieval results")
print("💡 Run Stage 4 first or use --stage all")
raise SystemExit(1)
retrieval_results = results_out["stage4"]["performance_comparison"]["retrieval_results"]
if not retrieval_results:
print("❌ No retrieval results found from Stage 4")
raise SystemExit(1)
print(f"📁 Using {len(retrieval_results)} retrieval results from Stage 4")
# Load LLM
try:
if args.llm_backend == "hf":
tokenizer, model = load_hf_model(args.model_name)
def llm_func(prompt):
return generate_hf(tokenizer, model, prompt)
else: # vllm
llm, sampling_params = load_vllm_model(args.model_name)
def llm_func(prompt):
return generate_vllm(llm, sampling_params, prompt)
# Run generation using stored retrieval results
import time
from llm_utils import create_prompt
generation_times = []
responses = []
print("🤖 Running generation on pre-retrieved results...")
for i, item in enumerate(retrieval_results):
query = item["query"]
retrieved_docs = item["retrieved_docs"]
# Prepare context from retrieved docs
context = "\n\n".join([doc["text"] for doc in retrieved_docs])
prompt = create_prompt(context, query, "emails")
# Time generation only
gen_start = time.time()
response = llm_func(prompt)
gen_time = time.time() - gen_start
generation_times.append(gen_time)
responses.append(response)
if i < 3:
print(f" Q{i + 1}: Gen={gen_time:.3f}s")
avg_gen_time = sum(generation_times) / len(generation_times)
print("\n📊 Generation Results:")
print(f" Total Queries: {len(retrieval_results)}")
print(f" Avg Generation Time: {avg_gen_time:.3f}s")
print(" (Search time from Stage 4)")
results_out["stage5"] = {
"total_queries": len(retrieval_results),
"avg_generation_time": avg_gen_time,
"generation_times": generation_times,
"responses": responses,
}
# Show sample results
print("\n📝 Sample Results:")
for i in range(min(3, len(retrieval_results))):
query = retrieval_results[i]["query"]
response = responses[i]
print(f" Q{i + 1}: {query[:60]}...")
print(f" A{i + 1}: {response[:100]}...")
print()
except Exception as e:
print(f"❌ Generation evaluation failed: {e}")
print("💡 Make sure transformers/vllm is installed and model is available")
print("✅ Stage 5 completed!\n")
if args.output and results_out:
with open(args.output, "w", encoding="utf-8") as f:
json.dump(results_out, f, indent=2)

View File

@@ -45,9 +45,9 @@ This will:
# Basic retrieval evaluation
python evaluate_financebench.py --index data/index/financebench_full_hnsw.leann
# Include QA evaluation with OpenAI
export OPENAI_API_KEY="your-key"
python evaluate_financebench.py --index data/index/financebench_full_hnsw.leann --qa-samples 20
# RAG generation evaluation with Qwen3-8B
python evaluate_financebench.py --index data/index/financebench_full_hnsw.leann --stage 4 --complexity 64 --llm-backend hf --model-name Qwen/Qwen3-8B --output results_qwen3.json
```
## Evaluation Methods
@@ -85,6 +85,24 @@ LLM-based answer evaluation using GPT-4o:
*Note: Number match rate >100% indicates multiple retrieved documents contain the same financial figures, which is expected behavior for financial data appearing across multiple document sections.
### LEANN-RAG Generation Performance (Qwen3-8B)
- **Stage 4 (Index Comparison):**
- Compact Index: 5.0 MB
- Non-compact Index: 172.2 MB
- **Storage Saving**: 97.1%
- **Search Performance**:
- Non-compact (no recompute): 0.009s avg per query
- Compact (with recompute): 2.203s avg per query
- Speed ratio: 0.004x
**Generation Evaluation (20 queries, complexity=64):**
- **Average Search Time**: 1.638s per query
- **Average Generation Time**: 45.957s per query
- **LLM Backend**: HuggingFace transformers
- **Model**: Qwen/Qwen3-8B (thinking model with <think></think> processing)
- **Total Questions Processed**: 20
## Options
```bash

View File

@@ -4,20 +4,25 @@ FinanceBench Evaluation Script - Modular Recall-based Evaluation
import argparse
import json
import logging
import os
import pickle
import time
from pathlib import Path
from typing import Optional
import numpy as np
import openai
# Import LEANN modules - this will bring in the modified faiss
from leann import LeannChat, LeannSearcher
# Import LEANN's modified faiss directly
from leann_backend_hnsw import faiss
from ..llm_utils import evaluate_rag, generate_hf, generate_vllm, load_hf_model, load_vllm_model
# Setup logging to reduce verbose output
logging.basicConfig(level=logging.WARNING)
logging.getLogger("leann.api").setLevel(logging.WARNING)
logging.getLogger("leann_backend_hnsw").setLevel(logging.WARNING)
class RecallEvaluator:
"""Stage 2: Evaluate Recall@3 (searcher vs baseline)"""
@@ -125,7 +130,6 @@ class FinanceBenchEvaluator:
def analyze_index_sizes(self) -> dict:
"""Analyze index sizes with and without embeddings"""
from pathlib import Path
print("📏 Analyzing index sizes...")
@@ -136,7 +140,6 @@ class FinanceBenchEvaluator:
sizes = {}
total_with_embeddings = 0
total_without_embeddings = 0
# Core index files
index_file = index_dir / f"{index_name}.index"
@@ -155,28 +158,14 @@ class FinanceBenchEvaluator:
sizes[name] = size_mb
total_with_embeddings += size_mb
# For pruned index calculation, exclude the main index file (contains embeddings)
if name != "index":
total_without_embeddings += size_mb
else:
sizes[name] = 0
# Estimate pruned index size (approximate)
# When embeddings are removed, the main index file becomes much smaller
# Rough estimate: graph structure is ~10-20% of full index size
estimated_pruned_index_size = sizes["index"] * 0.15 # Conservative estimate
total_without_embeddings += estimated_pruned_index_size
sizes["total_with_embeddings"] = total_with_embeddings
sizes["total_without_embeddings"] = total_without_embeddings
sizes["estimated_pruned_index"] = estimated_pruned_index_size
sizes["compression_ratio"] = (
total_without_embeddings / total_with_embeddings if total_with_embeddings > 0 else 0
)
sizes["index_only_mb"] = sizes["index"] # Just the .index file for fair comparison
print(f" 📁 Index with embeddings: {total_with_embeddings:.1f} MB")
print(f" 📁 Estimated pruned index: {total_without_embeddings:.1f} MB")
print(f" 🗜️ Compression ratio: {sizes['compression_ratio']:.2f}x")
print(f" 📁 Total index size: {total_with_embeddings:.1f} MB")
print(f" 📁 Index file only: {sizes['index']:.1f} MB")
return sizes
@@ -185,7 +174,6 @@ class FinanceBenchEvaluator:
print("🏗️ Building compact index from existing passages...")
# Load existing passages from current index
from pathlib import Path
from leann import LeannBuilder
@@ -241,7 +229,6 @@ class FinanceBenchEvaluator:
print("🏗️ Building non-compact index from existing passages...")
# Load existing passages from current index
from pathlib import Path
from leann import LeannBuilder
@@ -555,13 +542,7 @@ Respond with exactly one word: "CORRECT" if the generated answer is factually ac
# Legacy single index analysis (fallback)
if "total_with_embeddings" in timing_metrics and "current_index" not in timing_metrics:
print("\n📏 Index Size Analysis:")
print(
f" Index with embeddings: {timing_metrics.get('total_with_embeddings', 0):.1f} MB"
)
print(
f" Estimated pruned index: {timing_metrics.get('total_without_embeddings', 0):.1f} MB"
)
print(f" Compression ratio: {timing_metrics.get('compression_ratio', 0):.2f}x")
print(f" Total index size: {timing_metrics.get('total_with_embeddings', 0):.1f} MB")
print("\n📊 Accuracy:")
print(f" Accuracy: {timing_metrics.get('accuracy', 0) * 100:.1f}%")
@@ -610,6 +591,10 @@ def main():
parser.add_argument("--baseline-dir", default="baseline", help="Baseline output directory")
parser.add_argument("--openai-api-key", help="OpenAI API key for generation evaluation")
parser.add_argument("--output", help="Save results to JSON file")
parser.add_argument(
"--llm-backend", choices=["openai", "hf", "vllm"], default="openai", help="LLM backend"
)
parser.add_argument("--model-name", default="Qwen3-8B", help="Model name for HF/vLLM")
args = parser.parse_args()
@@ -768,7 +753,9 @@ def main():
print("🚀 Starting Stage 4: Comprehensive evaluation with dual index comparison")
# Use FinanceBench evaluator for QA evaluation
evaluator = FinanceBenchEvaluator(args.index, args.openai_api_key)
evaluator = FinanceBenchEvaluator(
args.index, args.openai_api_key if args.llm_backend == "openai" else None
)
print("📖 Loading FinanceBench dataset...")
data = evaluator.load_dataset(args.dataset)
@@ -802,20 +789,13 @@ def main():
print(
f" Non-compact index: {non_compact_size_metrics['total_with_embeddings']:.1f} MB"
)
_ = (
(
non_compact_size_metrics["total_with_embeddings"]
- compact_size_metrics["total_with_embeddings"]
)
/ compact_size_metrics["total_with_embeddings"]
* 100
)
print("\n📊 Index-only size comparison (.index file only):")
print(f" Compact index: {compact_size_metrics['index_only_mb']:.1f} MB")
print(f" Non-compact index: {non_compact_size_metrics['index_only_mb']:.1f} MB")
# Use index-only size for fair comparison (same as Enron emails)
storage_saving = (
(
non_compact_size_metrics["total_with_embeddings"]
- compact_size_metrics["total_with_embeddings"]
)
/ non_compact_size_metrics["total_with_embeddings"]
(non_compact_size_metrics["index_only_mb"] - compact_size_metrics["index_only_mb"])
/ non_compact_size_metrics["index_only_mb"]
* 100
)
print(f" Storage saving by compact: {storage_saving:.1f}%")
@@ -829,15 +809,58 @@ def main():
non_compact_index_path, args.index, data[:10], complexity=complexity
)
# Step 5: Timing breakdown evaluation WITH recompute (production mode)
# Step 5: Generation evaluation
test_samples = 20
print(f"\n🧪 Testing with first {test_samples} samples for timing analysis")
print(
"\n🔍🤖 Running timing breakdown evaluation (WITH recompute - production mode)..."
)
evaluation_start = time.time()
timing_metrics = evaluator.evaluate_timing_breakdown(data[:test_samples])
evaluation_time = time.time() - evaluation_start
print(f"\n🧪 Testing with first {test_samples} samples for generation analysis")
if args.llm_backend == "openai" and args.openai_api_key:
print("🔍🤖 Running OpenAI-based generation evaluation...")
evaluation_start = time.time()
timing_metrics = evaluator.evaluate_timing_breakdown(data[:test_samples])
evaluation_time = time.time() - evaluation_start
else:
print(
f"🔍🤖 Running {args.llm_backend} generation evaluation with {args.model_name}..."
)
try:
# Load LLM
if args.llm_backend == "hf":
tokenizer, model = load_hf_model(args.model_name)
def llm_func(prompt):
return generate_hf(tokenizer, model, prompt)
else: # vllm
llm, sampling_params = load_vllm_model(args.model_name)
def llm_func(prompt):
return generate_vllm(llm, sampling_params, prompt)
# Simple generation evaluation
queries = [item["question"] for item in data[:test_samples]]
gen_results = evaluate_rag(
evaluator.searcher,
llm_func,
queries,
domain="finance",
complexity=complexity,
)
timing_metrics = {
"total_questions": len(queries),
"avg_search_time": gen_results["avg_search_time"],
"avg_generation_time": gen_results["avg_generation_time"],
"results": gen_results["results"],
}
evaluation_time = time.time()
except Exception as e:
print(f"❌ Generation evaluation failed: {e}")
timing_metrics = {
"total_questions": 0,
"avg_search_time": 0,
"avg_generation_time": 0,
}
evaluation_time = 0
# Combine all metrics
combined_metrics = {
@@ -849,8 +872,11 @@ def main():
"storage_saving_percent": storage_saving,
}
# Print comprehensive results
evaluator._print_results(combined_metrics)
# Print results
print("\n📊 Generation Results:")
print(f" Total Questions: {timing_metrics.get('total_questions', 0)}")
print(f" Avg Search Time: {timing_metrics.get('avg_search_time', 0):.3f}s")
print(f" Avg Generation Time: {timing_metrics.get('avg_generation_time', 0):.3f}s")
# Save results if requested
if args.output:

View File

@@ -1,6 +1,6 @@
# LAION Multimodal Benchmark
A multimodal benchmark for evaluating image retrieval performance using LEANN with CLIP embeddings on LAION dataset subset.
A multimodal benchmark for evaluating image retrieval and generation performance using LEANN with CLIP embeddings and Qwen2.5-VL for multimodal generation on LAION dataset subset.
## Overview
@@ -9,6 +9,7 @@ This benchmark evaluates:
- **Recall@K performance** for image search
- **Complexity analysis** across different search parameters
- **Index size and storage efficiency**
- **Multimodal generation** with Qwen2.5-VL for image understanding and description
## Dataset Configuration
@@ -39,9 +40,13 @@ This will:
python evaluate_laion.py --index data/laion_index.leann
# Run specific stages
python evaluate_laion.py --index data/laion_index.leann --stage timing
python evaluate_laion.py --index data/laion_index.leann --stage recall
python evaluate_laion.py --index data/laion_index.leann --stage complexity
python evaluate_laion.py --index data/laion_index.leann --stage 2 # Recall evaluation
python evaluate_laion.py --index data/laion_index.leann --stage 3 # Complexity analysis
python evaluate_laion.py --index data/laion_index.leann --stage 4 # Index comparison
python evaluate_laion.py --index data/laion_index.leann --stage 5 # Multimodal generation
# Multimodal generation with Qwen2.5-VL
python evaluate_laion.py --index data/laion_index.leann --stage 5 --model-name Qwen/Qwen2.5-VL-7B-Instruct
```
### 3. Save results
@@ -74,23 +79,26 @@ python evaluate_laion.py \
## Evaluation Stages
### Stage 1: Index Analysis
- Analyzes index file sizes and metadata
- Reports storage efficiency
### Stage 2: Search Timing
- Measures average search latency
- Tests with configurable complexity and top-k
- Reports searches per second
### Stage 3: Recall Evaluation
- Evaluates Recall@K using ground truth
### Stage 2: Recall Evaluation
- Evaluates Recall@3 for multimodal retrieval
- Compares LEANN vs FAISS baseline performance
- Self-recall: query caption should retrieve original image
### Stage 4: Complexity Analysis
- Tests performance across different complexity levels [16, 32, 64, 128]
### Stage 3: Complexity Analysis
- Binary search for optimal complexity (90% recall target)
- Tests performance across different complexity levels
- Analyzes speed vs. accuracy tradeoffs
### Stage 4: Index Comparison
- Compares compact vs non-compact index sizes
- Measures search performance differences
- Reports storage efficiency and speed ratios
### Stage 5: Multimodal Generation
- Uses Qwen2.5-VL for image understanding and description
- Retrieval-Augmented Generation (RAG) with multimodal context
- Measures both search and generation timing
## Output Metrics
### Timing Metrics
@@ -100,48 +108,70 @@ python evaluate_laion.py \
- Latency in milliseconds
### Recall Metrics
- Recall@K percentage
- Recall@3 percentage for image retrieval
- Number of queries with ground truth
### Index Metrics
- Total index size (MB)
- Component breakdown (index, passages, metadata)
- Storage savings (compact vs non-compact)
- Backend and embedding model info
## Example Results
### Generation Metrics (Stage 5)
- Average search time per query
- Average generation time per query
- Time distribution (search vs generation)
- Sample multimodal responses
- Model: Qwen2.5-VL performance
## Benchmark Results
### LEANN-RAG Performance (CLIP ViT-L/14 + Qwen2.5-VL)
**Stage 3: Optimal Complexity Analysis**
- **Optimal Complexity**: 85 (achieving 90% Recall@3)
- **Binary Search Range**: 1-128
- **Target Recall**: 90%
- **Index Type**: Non-compact (for fast binary search)
**Stage 5: Multimodal Generation Performance (Qwen2.5-VL)**
- **Total Queries**: 20
- **Average Search Time**: 1.200s per query
- **Average Generation Time**: 6.558s per query
- **Time Distribution**: Search 15.5%, Generation 84.5%
- **LLM Backend**: HuggingFace transformers
- **Model**: Qwen/Qwen2.5-VL-7B-Instruct
- **Optimal Complexity**: 85
**System Performance:**
- **Index Size**: ~10,000 image embeddings from LAION subset
- **Embedding Model**: CLIP ViT-L/14 (768 dimensions)
- **Backend**: HNSW with cosine distance
### Example Results
```
🎯 LAION MULTIMODAL BENCHMARK RESULTS
============================================================
📏 Index Information:
Total size: 145.2 MB
Backend: hnsw
Embedding model: clip-vit-b-32
Total passages: 10000
📊 Multimodal Generation Results:
Total Queries: 20
Avg Search Time: 1.200s
Avg Generation Time: 6.558s
Time Distribution: Search 15.5%, Generation 84.5%
LLM Backend: HuggingFace transformers
Model: Qwen/Qwen2.5-VL-7B-Instruct
⚡ Search Performance:
Total queries: 200
Average search time: 0.023s
Median search time: 0.021s
Min/Max search time: 0.012s / 0.089s
Std dev: 0.008s
Complexity: 64
Top-K: 3
📊 Recall Performance:
Recall@3: 85.5%
Queries with ground truth: 200
⚙️ Complexity Analysis:
Complexity 16: 0.015s avg
Complexity 32: 0.019s avg
Complexity 64: 0.023s avg
Complexity 128: 0.031s avg
⚙️ Optimal Complexity Analysis:
Target Recall: 90%
Optimal Complexity: 85
Binary Search Range: 1-128
Non-compact Index (fast search, no recompute)
🚀 Performance Summary:
Searches per second: 43.5
Latency (ms): 23.0ms
Multimodal RAG: 7.758s total per query
Search: 15.5% of total time
Generation: 84.5% of total time
```
## Directory Structure

View File

@@ -4,6 +4,7 @@ LAION Multimodal Benchmark Evaluation Script - Modular Recall-based Evaluation
import argparse
import json
import logging
import os
import pickle
import time
@@ -14,6 +15,13 @@ from leann import LeannSearcher
from leann_backend_hnsw import faiss
from sentence_transformers import SentenceTransformer
from ..llm_utils import evaluate_multimodal_rag, load_qwen_vl_model
# Setup logging to reduce verbose output
logging.basicConfig(level=logging.WARNING)
logging.getLogger("leann.api").setLevel(logging.WARNING)
logging.getLogger("leann_backend_hnsw").setLevel(logging.WARNING)
class RecallEvaluator:
"""Stage 2: Evaluate Recall@3 (LEANN vs FAISS baseline for multimodal retrieval)"""
@@ -388,13 +396,22 @@ def main():
)
parser.add_argument(
"--stage",
choices=["2", "3", "4", "all"],
choices=["2", "3", "4", "5", "all"],
default="all",
help="Which stage to run (2=recall, 3=complexity, 4=index comparison)",
help="Which stage to run (2=recall, 3=complexity, 4=index comparison, 5=generation)",
)
parser.add_argument("--complexity", type=int, default=None, help="Complexity for search")
parser.add_argument("--baseline-dir", default="baseline", help="Baseline output directory")
parser.add_argument("--output", help="Save results to JSON file")
parser.add_argument(
"--llm-backend",
choices=["hf"],
default="hf",
help="LLM backend (Qwen2.5-VL only supports HF)",
)
parser.add_argument(
"--model-name", default="Qwen/Qwen2.5-VL-7B-Instruct", help="Multimodal model name"
)
args = parser.parse_args()
@@ -615,12 +632,69 @@ def main():
evaluator.cleanup()
print("✅ Stage 4 completed!\n")
if args.stage in ("5", "all"):
print("🚀 Starting Stage 5: Multimodal generation with Qwen2.5-VL")
evaluator = LAIONEvaluator(args.index)
captions = evaluator.load_queries(args.queries)
test_captions = captions[: min(20, len(captions))] # Use subset for generation
print(f"🧪 Testing multimodal generation with {len(test_captions)} queries")
# Load Qwen2.5-VL model
try:
print("Loading Qwen2.5-VL model...")
processor, model = load_qwen_vl_model(args.model_name)
# Run multimodal generation evaluation
complexity = args.complexity or 64
gen_results = evaluate_multimodal_rag(
evaluator.searcher,
test_captions,
processor=processor,
model=model,
complexity=complexity,
)
print("\n📊 Multimodal Generation Results:")
print(f" Total Queries: {len(test_captions)}")
print(f" Avg Search Time: {gen_results['avg_search_time']:.3f}s")
print(f" Avg Generation Time: {gen_results['avg_generation_time']:.3f}s")
total_time = gen_results["avg_search_time"] + gen_results["avg_generation_time"]
search_pct = (gen_results["avg_search_time"] / total_time) * 100
gen_pct = (gen_results["avg_generation_time"] / total_time) * 100
print(f" Time Distribution: Search {search_pct:.1f}%, Generation {gen_pct:.1f}%")
print(" LLM Backend: HuggingFace transformers")
print(f" Model: {args.model_name}")
# Show sample results
print("\n📝 Sample Multimodal Generations:")
for i, response in enumerate(gen_results["results"][:3]):
# Handle both string and dict formats for captions
if isinstance(test_captions[i], dict):
caption_text = test_captions[i].get("query", str(test_captions[i]))
else:
caption_text = str(test_captions[i])
print(f" Query {i + 1}: {caption_text[:60]}...")
print(f" Response {i + 1}: {response[:100]}...")
print()
except Exception as e:
print(f"❌ Multimodal generation evaluation failed: {e}")
print("💡 Make sure transformers and Qwen2.5-VL are installed")
import traceback
traceback.print_exc()
evaluator.cleanup()
print("✅ Stage 5 completed!\n")
if args.stage == "all":
print("🎉 All evaluation stages completed successfully!")
print("\n📋 Summary:")
print(" Stage 2: ✅ Multimodal Recall@3 evaluation completed")
print(" Stage 3: ✅ Optimal complexity found")
print(" Stage 4: ✅ Index comparison analysis completed")
print(" Stage 5: ✅ Multimodal generation evaluation completed")
print("\n🔧 Recommended next steps:")
print(" - Use optimal complexity for best speed/accuracy balance")
print(" - Review index comparison for storage vs performance tradeoffs")

301
benchmarks/llm_utils.py Normal file
View File

@@ -0,0 +1,301 @@
"""
LLM utils for RAG benchmarks with Qwen3-8B and Qwen2.5-VL (multimodal)
"""
import time
try:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
HF_AVAILABLE = True
except ImportError:
HF_AVAILABLE = False
try:
from vllm import LLM, SamplingParams
VLLM_AVAILABLE = True
except ImportError:
VLLM_AVAILABLE = False
def is_qwen3_model(model_name):
"""Check if model is Qwen3"""
return "Qwen3" in model_name or "qwen3" in model_name.lower()
def is_qwen_vl_model(model_name):
"""Check if model is Qwen2.5-VL"""
return "Qwen2.5-VL" in model_name or "qwen2.5-vl" in model_name.lower()
def apply_qwen3_chat_template(tokenizer, prompt):
"""Apply Qwen3 chat template with thinking enabled"""
messages = [{"role": "user", "content": prompt}]
return tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True,
)
def extract_thinking_answer(response):
"""Extract final answer from Qwen3 thinking model response"""
if "<think>" in response and "</think>" in response:
try:
think_end = response.index("</think>") + len("</think>")
final_answer = response[think_end:].strip()
return final_answer
except (ValueError, IndexError):
pass
return response.strip()
def load_hf_model(model_name="Qwen/Qwen3-8B"):
"""Load HuggingFace model"""
if not HF_AVAILABLE:
raise ImportError("transformers not available")
print(f"Loading HF: {model_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto",
trust_remote_code=True,
)
return tokenizer, model
def load_vllm_model(model_name="Qwen/Qwen3-8B"):
"""Load vLLM model"""
if not VLLM_AVAILABLE:
raise ImportError("vllm not available")
print(f"Loading vLLM: {model_name}")
llm = LLM(model=model_name, trust_remote_code=True)
# Qwen3 specific config
if is_qwen3_model(model_name):
stop_tokens = ["<|im_end|>", "<|end_of_text|>"]
max_tokens = 2048
else:
stop_tokens = None
max_tokens = 1024
sampling_params = SamplingParams(temperature=0.7, max_tokens=max_tokens, stop=stop_tokens)
return llm, sampling_params
def generate_hf(tokenizer, model, prompt, max_tokens=None):
"""Generate with HF - supports Qwen3 thinking models"""
model_name = getattr(model, "name_or_path", "unknown")
is_qwen3 = is_qwen3_model(model_name)
# Apply chat template for Qwen3
if is_qwen3:
prompt = apply_qwen3_chat_template(tokenizer, prompt)
max_tokens = max_tokens or 2048
else:
max_tokens = max_tokens or 1024
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response[len(prompt) :].strip()
# Extract final answer for thinking models
if is_qwen3:
return extract_thinking_answer(response)
return response
def generate_vllm(llm, sampling_params, prompt):
"""Generate with vLLM - supports Qwen3 thinking models"""
outputs = llm.generate([prompt], sampling_params)
response = outputs[0].outputs[0].text.strip()
# Extract final answer for Qwen3 thinking models
model_name = str(llm.llm_engine.model_config.model)
if is_qwen3_model(model_name):
return extract_thinking_answer(response)
return response
def create_prompt(context, query, domain="default"):
"""Create RAG prompt"""
if domain == "emails":
return f"Email content:\n{context}\n\nQuestion: {query}\n\nAnswer:"
elif domain == "finance":
return f"Financial content:\n{context}\n\nQuestion: {query}\n\nAnswer:"
elif domain == "multimodal":
return f"Image context:\n{context}\n\nQuestion: {query}\n\nAnswer:"
else:
return f"Context: {context}\n\nQuestion: {query}\n\nAnswer:"
def evaluate_rag(searcher, llm_func, queries, domain="default", top_k=3, complexity=64):
"""Simple RAG evaluation with timing"""
search_times = []
gen_times = []
results = []
for i, query in enumerate(queries):
# Search
start = time.time()
docs = searcher.search(query, top_k=top_k, complexity=complexity)
search_time = time.time() - start
# Generate
context = "\n\n".join([doc.text for doc in docs])
prompt = create_prompt(context, query, domain)
start = time.time()
response = llm_func(prompt)
gen_time = time.time() - start
search_times.append(search_time)
gen_times.append(gen_time)
results.append(response)
if i < 3:
print(f"Q{i + 1}: Search={search_time:.3f}s, Gen={gen_time:.3f}s")
return {
"avg_search_time": sum(search_times) / len(search_times),
"avg_generation_time": sum(gen_times) / len(gen_times),
"results": results,
}
def load_qwen_vl_model(model_name="Qwen/Qwen2.5-VL-7B-Instruct"):
"""Load Qwen2.5-VL multimodal model"""
if not HF_AVAILABLE:
raise ImportError("transformers not available")
print(f"Loading Qwen2.5-VL: {model_name}")
try:
from transformers import AutoModelForVision2Seq, AutoProcessor
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForVision2Seq.from_pretrained(
model_name, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True
)
return processor, model
except Exception as e:
print(f"Failed to load with AutoModelForVision2Seq, trying specific class: {e}")
# Fallback to specific class
try:
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
model = Qwen2VLForConditionalGeneration.from_pretrained(
model_name, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True
)
return processor, model
except Exception as e2:
raise ImportError(f"Failed to load Qwen2.5-VL model: {e2}")
def generate_qwen_vl(processor, model, prompt, image_path=None, max_tokens=512):
"""Generate with Qwen2.5-VL multimodal model"""
from PIL import Image
# Prepare inputs
if image_path:
image = Image.open(image_path)
inputs = processor(text=prompt, images=image, return_tensors="pt").to(model.device)
else:
inputs = processor(text=prompt, return_tensors="pt").to(model.device)
# Generate
with torch.no_grad():
generated_ids = model.generate(
**inputs, max_new_tokens=max_tokens, do_sample=False, temperature=0.1
)
# Decode response
generated_ids = generated_ids[:, inputs["input_ids"].shape[1] :]
response = processor.decode(generated_ids[0], skip_special_tokens=True)
return response
def create_multimodal_prompt(context, query, image_descriptions, task_type="images"):
"""Create prompt for multimodal RAG"""
if task_type == "images":
return f"""Based on the retrieved images and their descriptions, answer the following question.
Retrieved Image Descriptions:
{context}
Question: {query}
Provide a detailed answer based on the visual content described above."""
return f"Context: {context}\nQuestion: {query}\nAnswer:"
def evaluate_multimodal_rag(searcher, queries, processor=None, model=None, complexity=64):
"""Evaluate multimodal RAG with Qwen2.5-VL"""
search_times = []
gen_times = []
results = []
for i, query_item in enumerate(queries):
# Handle both string and dict formats for queries
if isinstance(query_item, dict):
query = query_item.get("query", "")
image_path = query_item.get("image_path") # Optional reference image
else:
query = str(query_item)
image_path = None
# Search
start_time = time.time()
search_results = searcher.search(query, top_k=3, complexity=complexity)
search_time = time.time() - start_time
search_times.append(search_time)
# Prepare context from search results
context_parts = []
for result in search_results:
context_parts.append(f"- {result.text}")
context = "\n".join(context_parts)
# Generate with multimodal model
start_time = time.time()
if processor and model:
prompt = create_multimodal_prompt(context, query, context_parts)
response = generate_qwen_vl(processor, model, prompt, image_path)
else:
response = f"Context: {context}"
gen_time = time.time() - start_time
gen_times.append(gen_time)
results.append(response)
if i < 3:
print(f"Q{i + 1}: Search={search_time:.3f}s, Gen={gen_time:.3f}s")
return {
"avg_search_time": sum(search_times) / len(search_times),
"avg_generation_time": sum(gen_times) / len(gen_times),
"results": results,
}