docs: data updated
This commit is contained in:
@@ -1,18 +1,19 @@
|
||||
# Enron Emails Benchmark
|
||||
|
||||
A retrieval-only benchmark for evaluating LEANN search on the Enron email corpus. It mirrors the structure and CLI of the existing FinanceBench and LAION benches, using stage-based evaluation focused on Recall@3.
|
||||
A comprehensive RAG benchmark for evaluating LEANN search and generation on the Enron email corpus. It mirrors the structure and CLI of the existing FinanceBench and LAION benches, using stage-based evaluation with Recall@3 and generation timing.
|
||||
|
||||
- Dataset: Enron email CSV (e.g., Kaggle wcukierski/enron-email-dataset) for passages
|
||||
- Queries: corbt/enron_emails_sample_questions (filtered for realistic questions)
|
||||
- Metric: Recall@3 vs FAISS Flat baseline
|
||||
- Metrics: Recall@3 vs FAISS Flat baseline + Generation evaluation with Qwen3-8B
|
||||
|
||||
## Layout
|
||||
|
||||
benchmarks/enron_emails/
|
||||
- setup_enron_emails.py: Prepare passages, build LEANN index, build FAISS baseline
|
||||
- evaluate_enron_emails.py: Evaluate retrieval recall (Stage 2)
|
||||
- evaluate_enron_emails.py: Evaluate retrieval recall (Stages 2-5) + generation with Qwen3-8B
|
||||
- data/: Generated passages, queries, embeddings-related files
|
||||
- baseline/: FAISS Flat baseline files
|
||||
- llm_utils.py: LLM utilities for Qwen3-8B generation (in parent directory)
|
||||
|
||||
## Quickstart
|
||||
|
||||
@@ -41,23 +42,33 @@ Stage 3 uses binary search over complexity to find the minimal value achieving t
|
||||
|
||||
4) Index comparison (Stage 4)
|
||||
|
||||
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 4 --max-queries 100 --output results.json
|
||||
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 4 --complexity 88 --max-queries 100 --output results.json
|
||||
|
||||
5) Generation evaluation (Stage 5)
|
||||
|
||||
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 5 --complexity 88 --llm-backend hf --model-name Qwen/Qwen3-8B
|
||||
|
||||
6) Combined index + generation evaluation (Stages 4+5, recommended)
|
||||
|
||||
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 45 --complexity 88 --llm-backend hf
|
||||
|
||||
Notes:
|
||||
- Minimal CLI: you can run from repo root with only `--index`, defaults match financebench/laion patterns:
|
||||
- `--stage` defaults to `all` (runs 2, 3, 4)
|
||||
- `--stage` defaults to `all` (runs 2, 3, 4, 5)
|
||||
- `--baseline-dir` defaults to `baseline`
|
||||
- `--queries` defaults to `data/evaluation_queries.jsonl` (or falls back to the index directory)
|
||||
- `--llm-backend` defaults to `hf` (HuggingFace), can use `vllm`
|
||||
- `--model-name` defaults to `Qwen/Qwen3-8B`
|
||||
- Fail-fast behavior: no silent fallbacks. If compact index cannot run with recompute, it errors out.
|
||||
|
||||
4) Index comparison (Stage 4)
|
||||
|
||||
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 4 --max-queries 100 --output results.json
|
||||
- Stage 5 requires Stage 4 retrieval results. Use `--stage 45` to run both efficiently.
|
||||
|
||||
Optional flags:
|
||||
- --queries data/evaluation_queries.jsonl (custom queries file)
|
||||
- --baseline-dir baseline (where FAISS baseline lives)
|
||||
- --complexity 64 (LEANN complexity parameter)
|
||||
- --complexity 88 (LEANN complexity parameter, optimal for 90% recall)
|
||||
- --llm-backend hf|vllm (LLM backend for generation)
|
||||
- --model-name Qwen/Qwen3-8B (LLM model for generation)
|
||||
- --max-queries 1000 (limit number of queries for evaluation)
|
||||
|
||||
## Files Produced
|
||||
- data/enron_passages_preview.jsonl: Small preview of passages used (for inspection)
|
||||
@@ -66,8 +77,9 @@ Optional flags:
|
||||
- data/evaluation_queries.jsonl: Query file (id + query; includes GT IDs for reference)
|
||||
|
||||
## Notes
|
||||
- We only evaluate retrieval Recall@3 (no generation). This matches the other benches’ style and stage flow.
|
||||
- Evaluates both retrieval Recall@3 and generation timing with Qwen3-8B thinking model.
|
||||
- The emails CSV must contain a column named "message" (raw RFC822 email) and a column named "file" for source identifier. Message-ID headers are parsed as canonical message IDs when present.
|
||||
- Qwen3-8B requires special handling for thinking models with chat templates and <think></think> tag processing.
|
||||
|
||||
## Stages Summary
|
||||
|
||||
@@ -80,16 +92,23 @@ Optional flags:
|
||||
|
||||
- Stage 4 (Index Comparison):
|
||||
- Reports .index-only sizes for compact vs non-compact.
|
||||
- Measures timings on 100 queries by default: non-compact (no recompute) vs compact (with recompute).
|
||||
- Measures timings on queries by default: non-compact (no recompute) vs compact (with recompute).
|
||||
- Stores retrieval results for Stage 5 generation evaluation.
|
||||
- Fails fast if compact recompute cannot run.
|
||||
- If `--complexity` is not provided, the script tries to use the best complexity from Stage 3:
|
||||
- First from the current run (when running `--stage all`), otherwise
|
||||
- From `enron_stage3_results.json` saved next to the index during the last Stage 3 run.
|
||||
- If neither exists, Stage 4 will error and ask you to run Stage 3 or pass `--complexity`.
|
||||
|
||||
- Stage 5 (Generation Evaluation):
|
||||
- Uses Qwen3-8B thinking model for RAG generation on retrieved documents from Stage 4.
|
||||
- Supports HuggingFace (`hf`) and vLLM (`vllm`) backends.
|
||||
- Measures generation timing separately from search timing.
|
||||
- Requires Stage 4 results (no additional searching performed).
|
||||
|
||||
## Example Results
|
||||
|
||||
These are sample results obtained on a subset of Enron data using all-mpnet-base-v2.
|
||||
These are sample results obtained on Enron data using all-mpnet-base-v2 and Qwen3-8B.
|
||||
|
||||
- Stage 3 (Binary Search):
|
||||
- Minimal complexity achieving 90% Recall@3: 88
|
||||
@@ -103,14 +122,20 @@ These are sample results obtained on a subset of Enron data using all-mpnet-base
|
||||
- C=256 → 92.0% Recall@3
|
||||
|
||||
- Stage 4 (Index Sizes, .index only):
|
||||
- Compact: ~2.17 MB
|
||||
- Non-compact: ~82.03 MB
|
||||
- Storage saving by compact: ~97.35%
|
||||
- Compact: ~2.2 MB
|
||||
- Non-compact: ~82.0 MB
|
||||
- Storage saving by compact: ~97.3%
|
||||
|
||||
- Stage 4 (Timing, 100 queries, complexity=88):
|
||||
- Non-compact (no recompute): ~0.0074 s avg per query
|
||||
- Compact (with recompute): ~1.947 s avg per query
|
||||
- Stage 4 (Search Timing, 988 queries, complexity=88):
|
||||
- Non-compact (no recompute): ~0.0075 s avg per query
|
||||
- Compact (with recompute): ~1.981 s avg per query
|
||||
- Speed ratio (non-compact/compact): ~0.0038x
|
||||
|
||||
Full JSON output for Stage 4 is saved by the script (see `--output`), e.g.:
|
||||
`benchmarks/enron_emails/results_enron_stage4.json`.
|
||||
- Stage 5 (RAG Generation, 988 queries, Qwen3-8B):
|
||||
- Average generation time: ~22.302 s per query
|
||||
- Total queries processed: 988
|
||||
- LLM backend: HuggingFace transformers
|
||||
- Model: Qwen/Qwen3-8B (thinking model with <think></think> processing)
|
||||
|
||||
Full JSON output is saved by the script (see `--output`), e.g.:
|
||||
`benchmarks/enron_emails/results_enron_stage45.json`.
|
||||
|
||||
@@ -7,13 +7,22 @@ On errors, fail fast without fallbacks.
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import pickle
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
from leann import LeannBuilder, LeannSearcher
|
||||
from leann_backend_hnsw import faiss
|
||||
|
||||
from ..llm_utils import generate_hf, generate_vllm, load_hf_model, load_vllm_model
|
||||
|
||||
# Setup logging to reduce verbose output
|
||||
logging.basicConfig(level=logging.WARNING)
|
||||
logging.getLogger("leann.api").setLevel(logging.WARNING)
|
||||
logging.getLogger("leann_backend_hnsw").setLevel(logging.WARNING)
|
||||
|
||||
|
||||
class RecallEvaluator:
|
||||
"""Stage 2: Evaluate Recall@3 (LEANN vs FAISS)"""
|
||||
@@ -119,7 +128,6 @@ class EnronEvaluator:
|
||||
|
||||
def analyze_index_sizes(self) -> dict:
|
||||
"""Analyze index sizes (.index only), similar to LAION bench."""
|
||||
from pathlib import Path
|
||||
|
||||
print("📏 Analyzing index sizes (.index only)...")
|
||||
index_path = Path(self.index_path)
|
||||
@@ -150,7 +158,6 @@ class EnronEvaluator:
|
||||
|
||||
def create_non_compact_index_for_comparison(self, non_compact_index_path: str) -> dict:
|
||||
"""Create a non-compact index for comparison using current passages and embeddings."""
|
||||
from pathlib import Path
|
||||
|
||||
current_index_path = Path(self.index_path)
|
||||
current_index_dir = current_index_path.parent
|
||||
@@ -230,6 +237,7 @@ class EnronEvaluator:
|
||||
"compact": {"search_times": []},
|
||||
"avg_search_times": {},
|
||||
"speed_ratio": 0.0,
|
||||
"retrieval_results": [], # Store retrieval results for Stage 5
|
||||
}
|
||||
|
||||
print("⚡ Comparing search performance between indexes...")
|
||||
@@ -248,10 +256,15 @@ class EnronEvaluator:
|
||||
compact_searcher = LeannSearcher(compact_path)
|
||||
for q in test_queries:
|
||||
t0 = time.time()
|
||||
_ = compact_searcher.search(
|
||||
docs = compact_searcher.search(
|
||||
q, top_k=3, complexity=complexity, recompute_embeddings=True
|
||||
)
|
||||
results["compact"]["search_times"].append(time.time() - t0)
|
||||
|
||||
# Store retrieval results for Stage 5
|
||||
results["retrieval_results"].append(
|
||||
{"query": q, "retrieved_docs": [{"id": doc.id, "text": doc.text} for doc in docs]}
|
||||
)
|
||||
compact_searcher.cleanup()
|
||||
|
||||
if results["non_compact"]["search_times"]:
|
||||
@@ -358,9 +371,9 @@ def main():
|
||||
)
|
||||
parser.add_argument(
|
||||
"--stage",
|
||||
choices=["2", "3", "4", "all"],
|
||||
choices=["2", "3", "4", "5", "all", "45"],
|
||||
default="all",
|
||||
help="Which stage to run (2=recall, 3=complexity, 4=index comparison)",
|
||||
help="Which stage to run (2=recall, 3=complexity, 4=index comparison, 5=generation)",
|
||||
)
|
||||
parser.add_argument("--complexity", type=int, default=None, help="LEANN search complexity")
|
||||
parser.add_argument("--baseline-dir", default="baseline", help="Baseline output directory")
|
||||
@@ -371,6 +384,8 @@ def main():
|
||||
"--target-recall", type=float, default=0.90, help="Target Recall@3 for Stage 3"
|
||||
)
|
||||
parser.add_argument("--output", help="Save results to JSON file")
|
||||
parser.add_argument("--llm-backend", choices=["hf", "vllm"], default="hf", help="LLM backend")
|
||||
parser.add_argument("--model-name", default="Qwen/Qwen3-8B", help="Model name")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
@@ -438,7 +453,7 @@ def main():
|
||||
enron_eval.cleanup()
|
||||
print("✅ Stage 3 completed!\n")
|
||||
|
||||
if args.stage in ("4", "all"):
|
||||
if args.stage in ("4", "all", "45"):
|
||||
print("🚀 Starting Stage 4: Index size + performance comparison")
|
||||
evaluator = RecallEvaluator(args.index, args.baseline_dir)
|
||||
enron_eval = EnronEvaluator(args.index)
|
||||
@@ -503,6 +518,92 @@ def main():
|
||||
enron_eval.cleanup()
|
||||
print("✅ Stage 4 completed!\n")
|
||||
|
||||
if args.stage in ("5", "all"):
|
||||
print("🚀 Starting Stage 5: Generation evaluation with Qwen3-8B")
|
||||
|
||||
# Check if Stage 4 results exist
|
||||
if "stage4" not in results_out or "performance_comparison" not in results_out["stage4"]:
|
||||
print("❌ Stage 5 requires Stage 4 retrieval results")
|
||||
print("💡 Run Stage 4 first or use --stage all")
|
||||
raise SystemExit(1)
|
||||
|
||||
retrieval_results = results_out["stage4"]["performance_comparison"]["retrieval_results"]
|
||||
if not retrieval_results:
|
||||
print("❌ No retrieval results found from Stage 4")
|
||||
raise SystemExit(1)
|
||||
|
||||
print(f"📁 Using {len(retrieval_results)} retrieval results from Stage 4")
|
||||
|
||||
# Load LLM
|
||||
try:
|
||||
if args.llm_backend == "hf":
|
||||
tokenizer, model = load_hf_model(args.model_name)
|
||||
|
||||
def llm_func(prompt):
|
||||
return generate_hf(tokenizer, model, prompt)
|
||||
else: # vllm
|
||||
llm, sampling_params = load_vllm_model(args.model_name)
|
||||
|
||||
def llm_func(prompt):
|
||||
return generate_vllm(llm, sampling_params, prompt)
|
||||
|
||||
# Run generation using stored retrieval results
|
||||
import time
|
||||
|
||||
from llm_utils import create_prompt
|
||||
|
||||
generation_times = []
|
||||
responses = []
|
||||
|
||||
print("🤖 Running generation on pre-retrieved results...")
|
||||
for i, item in enumerate(retrieval_results):
|
||||
query = item["query"]
|
||||
retrieved_docs = item["retrieved_docs"]
|
||||
|
||||
# Prepare context from retrieved docs
|
||||
context = "\n\n".join([doc["text"] for doc in retrieved_docs])
|
||||
prompt = create_prompt(context, query, "emails")
|
||||
|
||||
# Time generation only
|
||||
gen_start = time.time()
|
||||
response = llm_func(prompt)
|
||||
gen_time = time.time() - gen_start
|
||||
|
||||
generation_times.append(gen_time)
|
||||
responses.append(response)
|
||||
|
||||
if i < 3:
|
||||
print(f" Q{i + 1}: Gen={gen_time:.3f}s")
|
||||
|
||||
avg_gen_time = sum(generation_times) / len(generation_times)
|
||||
|
||||
print("\n📊 Generation Results:")
|
||||
print(f" Total Queries: {len(retrieval_results)}")
|
||||
print(f" Avg Generation Time: {avg_gen_time:.3f}s")
|
||||
print(" (Search time from Stage 4)")
|
||||
|
||||
results_out["stage5"] = {
|
||||
"total_queries": len(retrieval_results),
|
||||
"avg_generation_time": avg_gen_time,
|
||||
"generation_times": generation_times,
|
||||
"responses": responses,
|
||||
}
|
||||
|
||||
# Show sample results
|
||||
print("\n📝 Sample Results:")
|
||||
for i in range(min(3, len(retrieval_results))):
|
||||
query = retrieval_results[i]["query"]
|
||||
response = responses[i]
|
||||
print(f" Q{i + 1}: {query[:60]}...")
|
||||
print(f" A{i + 1}: {response[:100]}...")
|
||||
print()
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Generation evaluation failed: {e}")
|
||||
print("💡 Make sure transformers/vllm is installed and model is available")
|
||||
|
||||
print("✅ Stage 5 completed!\n")
|
||||
|
||||
if args.output and results_out:
|
||||
with open(args.output, "w", encoding="utf-8") as f:
|
||||
json.dump(results_out, f, indent=2)
|
||||
|
||||
Reference in New Issue
Block a user