update vidore
This commit is contained in:
3
.gitignore
vendored
3
.gitignore
vendored
@@ -91,7 +91,8 @@ packages/leann-backend-diskann/third_party/DiskANN/_deps/
|
|||||||
|
|
||||||
*.meta.json
|
*.meta.json
|
||||||
*.passages.json
|
*.passages.json
|
||||||
|
*.npy
|
||||||
|
*.db
|
||||||
batchtest.py
|
batchtest.py
|
||||||
tests/__pytest_cache__/
|
tests/__pytest_cache__/
|
||||||
tests/__pycache__/
|
tests/__pycache__/
|
||||||
|
|||||||
@@ -219,32 +219,47 @@ def _embed_images(model, processor, images: list[Image.Image]) -> list[Any]:
|
|||||||
|
|
||||||
def _embed_queries(model, processor, queries: list[str]) -> list[Any]:
|
def _embed_queries(model, processor, queries: list[str]) -> list[Any]:
|
||||||
import torch
|
import torch
|
||||||
from colpali_engine.utils.torch_utils import ListDataset
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
|
|
||||||
model.eval()
|
model.eval()
|
||||||
|
|
||||||
dataloader = DataLoader(
|
# Match MTEB's exact query processing from ColPaliEngineWrapper.get_text_embeddings:
|
||||||
dataset=ListDataset[str](queries),
|
# 1. MTEB receives batch["text"] which may already include instruction/prompt
|
||||||
batch_size=1,
|
# 2. Manually adds: query_prefix + text + query_augmentation_token * 10
|
||||||
shuffle=False,
|
# 3. Calls processor.process_queries(batch) where batch is now a list of strings
|
||||||
collate_fn=lambda x: processor.process_queries(x),
|
# 4. process_queries adds: query_prefix + text + suffix (suffix = query_augmentation_token * 10)
|
||||||
)
|
#
|
||||||
|
# However, MTEB's approach results in duplicate addition (20 tokens total).
|
||||||
q_vecs: list[Any] = []
|
# Since we're already adding the prompt in search_queries, let's try:
|
||||||
for batch_query in tqdm(dataloader, desc="Embedding queries"):
|
# Option 1: Just call process_queries (let it handle all additions) - avoids duplicate
|
||||||
with torch.no_grad():
|
# Option 2: Manual add + process_texts (to avoid duplicate)
|
||||||
batch_query = {k: v.to(model.device) for k, v in batch_query.items()}
|
#
|
||||||
|
# Testing shows Option 1 works better - just call process_queries without manual addition
|
||||||
|
|
||||||
|
all_embeds = []
|
||||||
|
batch_size = 32 # Match MTEB's default batch_size
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
for i in tqdm(range(0, len(queries), batch_size), desc="Embedding queries"):
|
||||||
|
batch_queries = queries[i:i + batch_size]
|
||||||
|
|
||||||
|
# Just call process_queries - it will add query_prefix + text + 10 tokens
|
||||||
|
# This avoids duplicate addition that happens in MTEB's approach
|
||||||
|
inputs = processor.process_queries(batch_queries)
|
||||||
|
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
||||||
|
|
||||||
if model.device.type == "cuda":
|
if model.device.type == "cuda":
|
||||||
with torch.autocast(
|
with torch.autocast(
|
||||||
device_type="cuda",
|
device_type="cuda",
|
||||||
dtype=model.dtype if model.dtype.is_floating_point else torch.bfloat16,
|
dtype=model.dtype if model.dtype.is_floating_point else torch.bfloat16,
|
||||||
):
|
):
|
||||||
embeddings_query = model(**batch_query)
|
outs = model(**inputs)
|
||||||
else:
|
else:
|
||||||
embeddings_query = model(**batch_query)
|
outs = model(**inputs)
|
||||||
q_vecs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
|
|
||||||
return q_vecs
|
# Match MTEB: convert to float32 on CPU
|
||||||
|
all_embeds.extend(list(torch.unbind(outs.cpu().to(torch.float32))))
|
||||||
|
|
||||||
|
return all_embeds
|
||||||
|
|
||||||
|
|
||||||
def _build_index(
|
def _build_index(
|
||||||
@@ -284,6 +299,247 @@ def _load_retriever_if_index_exists(index_path: str) -> Optional[Any]:
|
|||||||
return None
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
def _build_fast_plaid_index(
|
||||||
|
index_path: str,
|
||||||
|
doc_vecs: list[Any],
|
||||||
|
filepaths: list[str],
|
||||||
|
images: list[Image.Image],
|
||||||
|
) -> tuple[Any, float]:
|
||||||
|
"""
|
||||||
|
Build a Fast-Plaid index from document embeddings.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
index_path: Path to save the Fast-Plaid index
|
||||||
|
doc_vecs: List of document embeddings (each is a tensor with shape [num_tokens, embedding_dim])
|
||||||
|
filepaths: List of filepath identifiers for each document
|
||||||
|
images: List of PIL Images corresponding to each document
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple of (FastPlaid index object, build_time_in_seconds)
|
||||||
|
"""
|
||||||
|
import torch
|
||||||
|
from fast_plaid import search as fast_plaid_search
|
||||||
|
|
||||||
|
print(f" Preparing {len(doc_vecs)} document embeddings for Fast-Plaid...")
|
||||||
|
_t0 = time.perf_counter()
|
||||||
|
|
||||||
|
# Convert doc_vecs to list of tensors
|
||||||
|
documents_embeddings = []
|
||||||
|
for i, vec in enumerate(doc_vecs):
|
||||||
|
if i % 1000 == 0:
|
||||||
|
print(f" Converting embedding {i}/{len(doc_vecs)}...")
|
||||||
|
if not isinstance(vec, torch.Tensor):
|
||||||
|
vec = torch.tensor(vec) if isinstance(vec, np.ndarray) else torch.from_numpy(np.array(vec))
|
||||||
|
# Ensure float32 for Fast-Plaid
|
||||||
|
if vec.dtype != torch.float32:
|
||||||
|
vec = vec.float()
|
||||||
|
documents_embeddings.append(vec)
|
||||||
|
|
||||||
|
print(f" Converted {len(documents_embeddings)} embeddings")
|
||||||
|
if len(documents_embeddings) > 0:
|
||||||
|
print(f" First embedding shape: {documents_embeddings[0].shape}")
|
||||||
|
print(f" First embedding dtype: {documents_embeddings[0].dtype}")
|
||||||
|
|
||||||
|
# Prepare metadata for Fast-Plaid
|
||||||
|
print(f" Preparing metadata for {len(filepaths)} documents...")
|
||||||
|
metadata_list = []
|
||||||
|
for i, filepath in enumerate(filepaths):
|
||||||
|
metadata_list.append({
|
||||||
|
"filepath": filepath,
|
||||||
|
"index": i,
|
||||||
|
})
|
||||||
|
|
||||||
|
# Create Fast-Plaid index
|
||||||
|
print(f" Creating FastPlaid object with index path: {index_path}")
|
||||||
|
try:
|
||||||
|
fast_plaid_index = fast_plaid_search.FastPlaid(index=index_path)
|
||||||
|
print(f" FastPlaid object created successfully")
|
||||||
|
except Exception as e:
|
||||||
|
print(f" Error creating FastPlaid object: {type(e).__name__}: {e}")
|
||||||
|
import traceback
|
||||||
|
traceback.print_exc()
|
||||||
|
raise
|
||||||
|
|
||||||
|
print(f" Calling fast_plaid_index.create() with {len(documents_embeddings)} documents...")
|
||||||
|
try:
|
||||||
|
fast_plaid_index.create(
|
||||||
|
documents_embeddings=documents_embeddings,
|
||||||
|
metadata=metadata_list,
|
||||||
|
)
|
||||||
|
print(f" Fast-Plaid index created successfully")
|
||||||
|
except Exception as e:
|
||||||
|
print(f" Error creating Fast-Plaid index: {type(e).__name__}: {e}")
|
||||||
|
import traceback
|
||||||
|
traceback.print_exc()
|
||||||
|
raise
|
||||||
|
|
||||||
|
build_secs = time.perf_counter() - _t0
|
||||||
|
|
||||||
|
# Save images separately (Fast-Plaid doesn't store images)
|
||||||
|
print(f" Saving {len(images)} images...")
|
||||||
|
images_dir = Path(index_path) / "images"
|
||||||
|
images_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
for i, img in enumerate(tqdm(images, desc="Saving images")):
|
||||||
|
img_path = images_dir / f"doc_{i}.png"
|
||||||
|
img.save(str(img_path))
|
||||||
|
|
||||||
|
return fast_plaid_index, build_secs
|
||||||
|
|
||||||
|
|
||||||
|
def _fast_plaid_index_exists(index_path: str) -> bool:
|
||||||
|
"""
|
||||||
|
Check if Fast-Plaid index exists by checking for key files.
|
||||||
|
This avoids creating the FastPlaid object which may trigger memory allocation.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
index_path: Path to the Fast-Plaid index
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
True if index appears to exist, False otherwise
|
||||||
|
"""
|
||||||
|
index_path_obj = Path(index_path)
|
||||||
|
if not index_path_obj.exists() or not index_path_obj.is_dir():
|
||||||
|
return False
|
||||||
|
|
||||||
|
# Fast-Plaid creates a SQLite database file for metadata
|
||||||
|
# Check for metadata.db as the most reliable indicator
|
||||||
|
metadata_db = index_path_obj / "metadata.db"
|
||||||
|
if metadata_db.exists() and metadata_db.stat().st_size > 0:
|
||||||
|
return True
|
||||||
|
|
||||||
|
# Also check if directory has any files (might be incomplete index)
|
||||||
|
try:
|
||||||
|
if any(index_path_obj.iterdir()):
|
||||||
|
return True
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def _load_fast_plaid_index_if_exists(index_path: str) -> Optional[Any]:
|
||||||
|
"""
|
||||||
|
Load Fast-Plaid index if it exists.
|
||||||
|
First checks if index files exist, then creates the FastPlaid object.
|
||||||
|
The actual index data loading happens lazily when search is called.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
index_path: Path to the Fast-Plaid index
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
FastPlaid index object if exists, None otherwise
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
from fast_plaid import search as fast_plaid_search
|
||||||
|
|
||||||
|
# First check if index files exist without creating the object
|
||||||
|
if not _fast_plaid_index_exists(index_path):
|
||||||
|
return None
|
||||||
|
|
||||||
|
# Now try to create FastPlaid object
|
||||||
|
# This may trigger some memory allocation, but the full index loading is deferred
|
||||||
|
fast_plaid_index = fast_plaid_search.FastPlaid(index=index_path)
|
||||||
|
return fast_plaid_index
|
||||||
|
except ImportError:
|
||||||
|
# fast-plaid not installed
|
||||||
|
return None
|
||||||
|
except Exception as e:
|
||||||
|
# Any error (including memory errors from Rust backend) - return None
|
||||||
|
# The error will be caught and index will be rebuilt
|
||||||
|
print(f"Warning: Could not load Fast-Plaid index: {type(e).__name__}: {e}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
def _search_fast_plaid(
|
||||||
|
fast_plaid_index: Any,
|
||||||
|
query_vec: Any,
|
||||||
|
top_k: int,
|
||||||
|
) -> tuple[list[tuple[float, int]], float]:
|
||||||
|
"""
|
||||||
|
Search Fast-Plaid index with a query embedding.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
fast_plaid_index: FastPlaid index object
|
||||||
|
query_vec: Query embedding tensor with shape [num_tokens, embedding_dim]
|
||||||
|
top_k: Number of top results to return
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple of (results_list, search_time_in_seconds)
|
||||||
|
results_list: List of (score, doc_id) tuples
|
||||||
|
"""
|
||||||
|
import torch
|
||||||
|
|
||||||
|
_t0 = time.perf_counter()
|
||||||
|
|
||||||
|
# Ensure query is a torch tensor
|
||||||
|
if not isinstance(query_vec, torch.Tensor):
|
||||||
|
q_vec_tensor = torch.tensor(query_vec) if isinstance(query_vec, np.ndarray) else torch.from_numpy(np.array(query_vec))
|
||||||
|
else:
|
||||||
|
q_vec_tensor = query_vec
|
||||||
|
|
||||||
|
# Fast-Plaid expects shape [num_queries, num_tokens, embedding_dim]
|
||||||
|
if q_vec_tensor.dim() == 2:
|
||||||
|
q_vec_tensor = q_vec_tensor.unsqueeze(0) # [1, num_tokens, embedding_dim]
|
||||||
|
|
||||||
|
# Perform search
|
||||||
|
scores = fast_plaid_index.search(
|
||||||
|
queries_embeddings=q_vec_tensor,
|
||||||
|
top_k=top_k,
|
||||||
|
show_progress=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
search_secs = time.perf_counter() - _t0
|
||||||
|
|
||||||
|
# Convert Fast-Plaid results to same format as LEANN: list of (score, doc_id) tuples
|
||||||
|
results = []
|
||||||
|
if scores and len(scores) > 0:
|
||||||
|
query_results = scores[0]
|
||||||
|
# Fast-Plaid returns (doc_id, score), convert to (score, doc_id) to match LEANN format
|
||||||
|
results = [(float(score), int(doc_id)) for doc_id, score in query_results]
|
||||||
|
|
||||||
|
return results, search_secs
|
||||||
|
|
||||||
|
|
||||||
|
def _get_fast_plaid_image(index_path: str, doc_id: int) -> Optional[Image.Image]:
|
||||||
|
"""
|
||||||
|
Retrieve image for a document from Fast-Plaid index.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
index_path: Path to the Fast-Plaid index
|
||||||
|
doc_id: Document ID
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
PIL Image if found, None otherwise
|
||||||
|
"""
|
||||||
|
images_dir = Path(index_path) / "images"
|
||||||
|
image_path = images_dir / f"doc_{doc_id}.png"
|
||||||
|
|
||||||
|
if image_path.exists():
|
||||||
|
return Image.open(image_path)
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
def _get_fast_plaid_metadata(index_path: str, doc_id: int) -> Optional[dict]:
|
||||||
|
"""
|
||||||
|
Retrieve metadata for a document from Fast-Plaid index.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
index_path: Path to the Fast-Plaid index
|
||||||
|
doc_id: Document ID
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Dictionary with metadata if found, None otherwise
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
from fast_plaid import filtering
|
||||||
|
metadata_list = filtering.get(index=index_path, subset=[doc_id])
|
||||||
|
if metadata_list and len(metadata_list) > 0:
|
||||||
|
return metadata_list[0]
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
def _generate_similarity_map(
|
def _generate_similarity_map(
|
||||||
model,
|
model,
|
||||||
processor,
|
processor,
|
||||||
|
|||||||
@@ -2,13 +2,18 @@
|
|||||||
# %%
|
# %%
|
||||||
# uv pip install matplotlib qwen_vl_utils
|
# uv pip install matplotlib qwen_vl_utils
|
||||||
import argparse
|
import argparse
|
||||||
|
import faulthandler
|
||||||
import os
|
import os
|
||||||
import time
|
import time
|
||||||
from typing import Any, Optional
|
from typing import Any, Optional
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
# Enable faulthandler to get stack trace on segfault
|
||||||
|
faulthandler.enable()
|
||||||
|
|
||||||
|
|
||||||
from leann_multi_vector import ( # utility functions/classes
|
from leann_multi_vector import ( # utility functions/classes
|
||||||
_ensure_repo_paths_importable,
|
_ensure_repo_paths_importable,
|
||||||
@@ -20,6 +25,11 @@ from leann_multi_vector import ( # utility functions/classes
|
|||||||
_build_index,
|
_build_index,
|
||||||
_load_retriever_if_index_exists,
|
_load_retriever_if_index_exists,
|
||||||
_generate_similarity_map,
|
_generate_similarity_map,
|
||||||
|
_build_fast_plaid_index,
|
||||||
|
_load_fast_plaid_index_if_exists,
|
||||||
|
_search_fast_plaid,
|
||||||
|
_get_fast_plaid_image,
|
||||||
|
_get_fast_plaid_metadata,
|
||||||
QwenVL,
|
QwenVL,
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -69,6 +79,8 @@ PAGES_DIR: str = "./pages"
|
|||||||
# Index + retrieval settings
|
# Index + retrieval settings
|
||||||
# Use a different index path for larger dataset to avoid overwriting existing index
|
# Use a different index path for larger dataset to avoid overwriting existing index
|
||||||
INDEX_PATH: str = "./indexes/colvision_large.leann"
|
INDEX_PATH: str = "./indexes/colvision_large.leann"
|
||||||
|
# Fast-Plaid index settings (alternative to LEANN index)
|
||||||
|
# These are now command-line arguments (see CLI overrides section)
|
||||||
TOPK: int = 3
|
TOPK: int = 3
|
||||||
FIRST_STAGE_K: int = 500
|
FIRST_STAGE_K: int = 500
|
||||||
REBUILD_INDEX: bool = False
|
REBUILD_INDEX: bool = False
|
||||||
@@ -98,24 +110,64 @@ parser.add_argument(
|
|||||||
default=QUERY,
|
default=QUERY,
|
||||||
help=f"Query string to search for. Default: '{QUERY}'",
|
help=f"Query string to search for. Default: '{QUERY}'",
|
||||||
)
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-fast-plaid",
|
||||||
|
action="store_true",
|
||||||
|
default=False,
|
||||||
|
help="Set to True to use fast-plaid instead of LEANN. Default: False",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--fast-plaid-index-path",
|
||||||
|
type=str,
|
||||||
|
default="./indexes/colvision_fastplaid",
|
||||||
|
help="Path to the Fast-Plaid index. Default: './indexes/colvision_fastplaid'",
|
||||||
|
)
|
||||||
cli_args, _unknown = parser.parse_known_args()
|
cli_args, _unknown = parser.parse_known_args()
|
||||||
SEARCH_METHOD: str = cli_args.search_method
|
SEARCH_METHOD: str = cli_args.search_method
|
||||||
QUERY = cli_args.query # Override QUERY with CLI argument if provided
|
QUERY = cli_args.query # Override QUERY with CLI argument if provided
|
||||||
|
USE_FAST_PLAID: bool = cli_args.use_fast_plaid
|
||||||
|
FAST_PLAID_INDEX_PATH: str = cli_args.fast_plaid_index_path
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
|
|
||||||
# Step 1: Check if we can skip data loading (index already exists)
|
# Step 1: Check if we can skip data loading (index already exists)
|
||||||
retriever: Optional[Any] = None
|
retriever: Optional[Any] = None
|
||||||
|
fast_plaid_index: Optional[Any] = None
|
||||||
need_to_build_index = REBUILD_INDEX
|
need_to_build_index = REBUILD_INDEX
|
||||||
|
|
||||||
if not REBUILD_INDEX:
|
if USE_FAST_PLAID:
|
||||||
retriever = _load_retriever_if_index_exists(INDEX_PATH)
|
# Fast-Plaid index handling
|
||||||
if retriever is not None:
|
if not REBUILD_INDEX:
|
||||||
print(f"✓ Index loaded from {INDEX_PATH}")
|
try:
|
||||||
print(f"✓ Images available at: {retriever._images_dir_path()}")
|
fast_plaid_index = _load_fast_plaid_index_if_exists(FAST_PLAID_INDEX_PATH)
|
||||||
need_to_build_index = False
|
if fast_plaid_index is not None:
|
||||||
|
print(f"✓ Fast-Plaid index found at {FAST_PLAID_INDEX_PATH}")
|
||||||
|
need_to_build_index = False
|
||||||
|
else:
|
||||||
|
print(f"Fast-Plaid index not found, will build new index")
|
||||||
|
need_to_build_index = True
|
||||||
|
except Exception as e:
|
||||||
|
# If loading fails (e.g., memory error, corrupted index), rebuild
|
||||||
|
print(f"Warning: Failed to load Fast-Plaid index: {e}")
|
||||||
|
print("Will rebuild the index...")
|
||||||
|
need_to_build_index = True
|
||||||
|
fast_plaid_index = None
|
||||||
else:
|
else:
|
||||||
print(f"Index not found, will build new index")
|
print(f"REBUILD_INDEX=True, will rebuild Fast-Plaid index")
|
||||||
|
need_to_build_index = True
|
||||||
|
else:
|
||||||
|
# Original LEANN index handling
|
||||||
|
if not REBUILD_INDEX:
|
||||||
|
retriever = _load_retriever_if_index_exists(INDEX_PATH)
|
||||||
|
if retriever is not None:
|
||||||
|
print(f"✓ Index loaded from {INDEX_PATH}")
|
||||||
|
print(f"✓ Images available at: {retriever._images_dir_path()}")
|
||||||
|
need_to_build_index = False
|
||||||
|
else:
|
||||||
|
print(f"Index not found, will build new index")
|
||||||
|
need_to_build_index = True
|
||||||
|
else:
|
||||||
|
print(f"REBUILD_INDEX=True, will rebuild index")
|
||||||
need_to_build_index = True
|
need_to_build_index = True
|
||||||
|
|
||||||
# Step 2: Load data only if we need to build the index
|
# Step 2: Load data only if we need to build the index
|
||||||
@@ -347,6 +399,19 @@ if need_to_build_index:
|
|||||||
f"No images found in {PAGES_DIR}. Provide PDF path in PDF variable or ensure images exist."
|
f"No images found in {PAGES_DIR}. Provide PDF path in PDF variable or ensure images exist."
|
||||||
)
|
)
|
||||||
print(f"Loaded {len(images)} images")
|
print(f"Loaded {len(images)} images")
|
||||||
|
|
||||||
|
# Memory check before loading model
|
||||||
|
try:
|
||||||
|
import psutil
|
||||||
|
import torch
|
||||||
|
process = psutil.Process(os.getpid())
|
||||||
|
mem_info = process.memory_info()
|
||||||
|
print(f"Memory usage after loading images: {mem_info.rss / 1024 / 1024 / 1024:.2f} GB")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
print(f"GPU memory allocated: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
|
||||||
|
print(f"GPU memory reserved: {torch.cuda.memory_reserved() / 1024**3:.2f} GB")
|
||||||
|
except ImportError:
|
||||||
|
pass
|
||||||
else:
|
else:
|
||||||
print("Skipping dataset loading (using existing index)")
|
print("Skipping dataset loading (using existing index)")
|
||||||
filepaths = [] # Not needed when using existing index
|
filepaths = [] # Not needed when using existing index
|
||||||
@@ -355,23 +420,91 @@ else:
|
|||||||
|
|
||||||
# %%
|
# %%
|
||||||
# Step 3: Load model and processor (only if we need to build index or perform search)
|
# Step 3: Load model and processor (only if we need to build index or perform search)
|
||||||
model_name, model, processor, device_str, device, dtype = _load_colvision(MODEL)
|
print("Step 3: Loading model and processor...")
|
||||||
print(f"Using model={model_name}, device={device_str}, dtype={dtype}")
|
print(f" Model: {MODEL}")
|
||||||
|
try:
|
||||||
|
import sys
|
||||||
|
print(f" Python version: {sys.version}")
|
||||||
|
print(f" Python executable: {sys.executable}")
|
||||||
|
|
||||||
|
model_name, model, processor, device_str, device, dtype = _load_colvision(MODEL)
|
||||||
|
print(f"✓ Using model={model_name}, device={device_str}, dtype={dtype}")
|
||||||
|
|
||||||
|
# Memory check after loading model
|
||||||
|
try:
|
||||||
|
import psutil
|
||||||
|
import torch
|
||||||
|
process = psutil.Process(os.getpid())
|
||||||
|
mem_info = process.memory_info()
|
||||||
|
print(f" Memory usage after loading model: {mem_info.rss / 1024 / 1024 / 1024:.2f} GB")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
print(f" GPU memory allocated: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
|
||||||
|
print(f" GPU memory reserved: {torch.cuda.memory_reserved() / 1024**3:.2f} GB")
|
||||||
|
except ImportError:
|
||||||
|
pass
|
||||||
|
except Exception as e:
|
||||||
|
print(f"✗ Error loading model: {type(e).__name__}: {e}")
|
||||||
|
import traceback
|
||||||
|
traceback.print_exc()
|
||||||
|
raise
|
||||||
|
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
# Step 4: Build index if needed
|
# Step 4: Build index if needed
|
||||||
if need_to_build_index and retriever is None:
|
if need_to_build_index:
|
||||||
print("Building index...")
|
print("Step 4: Building index...")
|
||||||
doc_vecs = _embed_images(model, processor, images)
|
print(f" Number of images: {len(images)}")
|
||||||
retriever = _build_index(INDEX_PATH, doc_vecs, filepaths, images)
|
print(f" Number of filepaths: {len(filepaths)}")
|
||||||
print(f"✓ Index built and images saved to: {retriever._images_dir_path()}")
|
|
||||||
# Clear memory
|
try:
|
||||||
del images, filepaths, doc_vecs
|
print(" Embedding images...")
|
||||||
|
doc_vecs = _embed_images(model, processor, images)
|
||||||
|
print(f" Embedded {len(doc_vecs)} documents")
|
||||||
|
print(f" First doc vec shape: {doc_vecs[0].shape if len(doc_vecs) > 0 else 'N/A'}")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error embedding images: {type(e).__name__}: {e}")
|
||||||
|
import traceback
|
||||||
|
traceback.print_exc()
|
||||||
|
raise
|
||||||
|
|
||||||
|
if USE_FAST_PLAID:
|
||||||
|
# Build Fast-Plaid index
|
||||||
|
print(" Building Fast-Plaid index...")
|
||||||
|
try:
|
||||||
|
fast_plaid_index, build_secs = _build_fast_plaid_index(
|
||||||
|
FAST_PLAID_INDEX_PATH, doc_vecs, filepaths, images
|
||||||
|
)
|
||||||
|
from pathlib import Path
|
||||||
|
print(f"✓ Fast-Plaid index built in {build_secs:.3f}s")
|
||||||
|
print(f"✓ Index saved to: {FAST_PLAID_INDEX_PATH}")
|
||||||
|
print(f"✓ Images saved to: {Path(FAST_PLAID_INDEX_PATH) / 'images'}")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error building Fast-Plaid index: {type(e).__name__}: {e}")
|
||||||
|
import traceback
|
||||||
|
traceback.print_exc()
|
||||||
|
raise
|
||||||
|
finally:
|
||||||
|
# Clear memory
|
||||||
|
print(" Clearing memory...")
|
||||||
|
del images, filepaths, doc_vecs
|
||||||
|
else:
|
||||||
|
# Build original LEANN index
|
||||||
|
try:
|
||||||
|
retriever = _build_index(INDEX_PATH, doc_vecs, filepaths, images)
|
||||||
|
print(f"✓ Index built and images saved to: {retriever._images_dir_path()}")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error building LEANN index: {type(e).__name__}: {e}")
|
||||||
|
import traceback
|
||||||
|
traceback.print_exc()
|
||||||
|
raise
|
||||||
|
finally:
|
||||||
|
# Clear memory
|
||||||
|
print(" Clearing memory...")
|
||||||
|
del images, filepaths, doc_vecs
|
||||||
|
|
||||||
# Note: Images are now stored in the index, retriever will load them on-demand from disk
|
# Note: Images are now stored separately, retriever/fast_plaid_index will reference them
|
||||||
|
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
@@ -380,44 +513,67 @@ _t0 = time.perf_counter()
|
|||||||
q_vec = _embed_queries(model, processor, [QUERY])[0]
|
q_vec = _embed_queries(model, processor, [QUERY])[0]
|
||||||
query_embed_secs = time.perf_counter() - _t0
|
query_embed_secs = time.perf_counter() - _t0
|
||||||
|
|
||||||
query_np = q_vec.float().numpy()
|
|
||||||
|
|
||||||
print(f"[Search] Method: {SEARCH_METHOD}")
|
print(f"[Search] Method: {SEARCH_METHOD}")
|
||||||
print(f"[Timing] Query embedding: {query_embed_secs:.3f}s")
|
print(f"[Timing] Query embedding: {query_embed_secs:.3f}s")
|
||||||
|
|
||||||
# Run the selected search method and time it
|
# Run the selected search method and time it
|
||||||
_t0 = time.perf_counter()
|
if USE_FAST_PLAID:
|
||||||
if SEARCH_METHOD == "ann":
|
# Fast-Plaid search
|
||||||
results = retriever.search(query_np, topk=TOPK, first_stage_k=FIRST_STAGE_K)
|
if fast_plaid_index is None:
|
||||||
search_secs = time.perf_counter() - _t0
|
fast_plaid_index = _load_fast_plaid_index_if_exists(FAST_PLAID_INDEX_PATH)
|
||||||
print(f"[Timing] Search (ANN): {search_secs:.3f}s (first_stage_k={FIRST_STAGE_K})")
|
if fast_plaid_index is None:
|
||||||
elif SEARCH_METHOD == "exact":
|
raise RuntimeError(f"Fast-Plaid index not found at {FAST_PLAID_INDEX_PATH}")
|
||||||
results = retriever.search_exact(query_np, topk=TOPK, first_stage_k=FIRST_STAGE_K)
|
|
||||||
search_secs = time.perf_counter() - _t0
|
results, search_secs = _search_fast_plaid(fast_plaid_index, q_vec, TOPK)
|
||||||
print(f"[Timing] Search (Exact rerank): {search_secs:.3f}s (first_stage_k={FIRST_STAGE_K})")
|
print(f"[Timing] Fast-Plaid Search: {search_secs:.3f}s")
|
||||||
elif SEARCH_METHOD == "exact-all":
|
|
||||||
results = retriever.search_exact_all(query_np, topk=TOPK)
|
|
||||||
search_secs = time.perf_counter() - _t0
|
|
||||||
print(f"[Timing] Search (Exact all): {search_secs:.3f}s")
|
|
||||||
else:
|
else:
|
||||||
results = []
|
# Original LEANN search
|
||||||
|
query_np = q_vec.float().numpy()
|
||||||
|
|
||||||
|
if SEARCH_METHOD == "ann":
|
||||||
|
results = retriever.search(query_np, topk=TOPK, first_stage_k=FIRST_STAGE_K)
|
||||||
|
search_secs = time.perf_counter() - _t0
|
||||||
|
print(f"[Timing] Search (ANN): {search_secs:.3f}s (first_stage_k={FIRST_STAGE_K})")
|
||||||
|
elif SEARCH_METHOD == "exact":
|
||||||
|
results = retriever.search_exact(query_np, topk=TOPK, first_stage_k=FIRST_STAGE_K)
|
||||||
|
search_secs = time.perf_counter() - _t0
|
||||||
|
print(f"[Timing] Search (Exact rerank): {search_secs:.3f}s (first_stage_k={FIRST_STAGE_K})")
|
||||||
|
elif SEARCH_METHOD == "exact-all":
|
||||||
|
results = retriever.search_exact_all(query_np, topk=TOPK)
|
||||||
|
search_secs = time.perf_counter() - _t0
|
||||||
|
print(f"[Timing] Search (Exact all): {search_secs:.3f}s")
|
||||||
|
else:
|
||||||
|
results = []
|
||||||
if not results:
|
if not results:
|
||||||
print("No results found.")
|
print("No results found.")
|
||||||
else:
|
else:
|
||||||
print(f'Top {len(results)} results for query: "{QUERY}"')
|
print(f'Top {len(results)} results for query: "{QUERY}"')
|
||||||
top_images: list[Image.Image] = []
|
top_images: list[Image.Image] = []
|
||||||
for rank, (score, doc_id) in enumerate(results, start=1):
|
for rank, (score, doc_id) in enumerate(results, start=1):
|
||||||
# Retrieve image from index instead of memory
|
# Retrieve image and metadata based on index type
|
||||||
image = retriever.get_image(doc_id)
|
if USE_FAST_PLAID:
|
||||||
if image is None:
|
# Fast-Plaid: load image and get metadata
|
||||||
print(f"Warning: Could not retrieve image for doc_id {doc_id}")
|
image = _get_fast_plaid_image(FAST_PLAID_INDEX_PATH, doc_id)
|
||||||
continue
|
if image is None:
|
||||||
|
print(f"Warning: Could not find image for doc_id {doc_id}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
metadata = _get_fast_plaid_metadata(FAST_PLAID_INDEX_PATH, doc_id)
|
||||||
|
path = metadata.get("filepath", f"doc_{doc_id}") if metadata else f"doc_{doc_id}"
|
||||||
|
top_images.append(image)
|
||||||
|
else:
|
||||||
|
# Original LEANN: retrieve from retriever
|
||||||
|
image = retriever.get_image(doc_id)
|
||||||
|
if image is None:
|
||||||
|
print(f"Warning: Could not retrieve image for doc_id {doc_id}")
|
||||||
|
continue
|
||||||
|
|
||||||
metadata = retriever.get_metadata(doc_id)
|
metadata = retriever.get_metadata(doc_id)
|
||||||
path = metadata.get("filepath", "unknown") if metadata else "unknown"
|
path = metadata.get("filepath", "unknown") if metadata else "unknown"
|
||||||
|
top_images.append(image)
|
||||||
|
|
||||||
# For HF dataset, path is a descriptive identifier, not a real file path
|
# For HF dataset, path is a descriptive identifier, not a real file path
|
||||||
print(f"{rank}) MaxSim: {score:.4f}, Page: {path}")
|
print(f"{rank}) MaxSim: {score:.4f}, Page: {path}")
|
||||||
top_images.append(image)
|
|
||||||
|
|
||||||
if SAVE_TOP_IMAGE:
|
if SAVE_TOP_IMAGE:
|
||||||
from pathlib import Path as _Path
|
from pathlib import Path as _Path
|
||||||
|
|||||||
@@ -0,0 +1,629 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
Modular script to reproduce NDCG results for ViDoRe v2 benchmark.
|
||||||
|
|
||||||
|
This script uses the interface from leann_multi_vector.py to:
|
||||||
|
1. Download ViDoRe v2 datasets
|
||||||
|
2. Build indexes (LEANN or Fast-Plaid)
|
||||||
|
3. Perform retrieval
|
||||||
|
4. Evaluate using NDCG metrics
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
# Evaluate all ViDoRe v2 tasks
|
||||||
|
python vidore_v2_benchmark.py --model colqwen2 --tasks all
|
||||||
|
|
||||||
|
# Evaluate specific task
|
||||||
|
python vidore_v2_benchmark.py --model colqwen2 --task Vidore2ESGReportsRetrieval
|
||||||
|
|
||||||
|
# Use Fast-Plaid index
|
||||||
|
python vidore_v2_benchmark.py --model colqwen2 --use-fast-plaid --fast-plaid-index-path ./indexes/vidore_fastplaid
|
||||||
|
|
||||||
|
# Rebuild index
|
||||||
|
python vidore_v2_benchmark.py --model colqwen2 --rebuild-index
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, Optional
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from datasets import load_dataset
|
||||||
|
from PIL import Image
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
# Import MTEB for evaluation metrics
|
||||||
|
try:
|
||||||
|
import pytrec_eval
|
||||||
|
from mteb._evaluators.retrieval_metrics import (
|
||||||
|
calculate_retrieval_scores,
|
||||||
|
make_score_dict,
|
||||||
|
)
|
||||||
|
except ImportError:
|
||||||
|
print("Warning: MTEB not available. Install with: pip install mteb")
|
||||||
|
pytrec_eval = None
|
||||||
|
|
||||||
|
from leann_multi_vector import (
|
||||||
|
_ensure_repo_paths_importable,
|
||||||
|
_load_colvision,
|
||||||
|
_embed_images,
|
||||||
|
_embed_queries,
|
||||||
|
_build_index,
|
||||||
|
_load_retriever_if_index_exists,
|
||||||
|
_build_fast_plaid_index,
|
||||||
|
_load_fast_plaid_index_if_exists,
|
||||||
|
_search_fast_plaid,
|
||||||
|
_get_fast_plaid_image,
|
||||||
|
_get_fast_plaid_metadata,
|
||||||
|
)
|
||||||
|
|
||||||
|
_ensure_repo_paths_importable(__file__)
|
||||||
|
|
||||||
|
# Language name to dataset language field value mapping
|
||||||
|
# Dataset uses ISO 639-3 + ISO 15924 format (e.g., "eng-Latn")
|
||||||
|
LANGUAGE_MAPPING = {
|
||||||
|
"english": "eng-Latn",
|
||||||
|
"french": "fra-Latn",
|
||||||
|
"spanish": "spa-Latn",
|
||||||
|
"german": "deu-Latn",
|
||||||
|
}
|
||||||
|
|
||||||
|
# ViDoRe v2 task configurations
|
||||||
|
# Prompts match MTEB task metadata prompts
|
||||||
|
VIDORE_V2_TASKS = {
|
||||||
|
"Vidore2ESGReportsRetrieval": {
|
||||||
|
"dataset_path": "vidore/esg_reports_v2",
|
||||||
|
"revision": "0542c0d03da0ec1c8cbc517c8d78e7e95c75d3d3",
|
||||||
|
"languages": ["french", "spanish", "english", "german"],
|
||||||
|
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
|
||||||
|
},
|
||||||
|
"Vidore2EconomicsReportsRetrieval": {
|
||||||
|
"dataset_path": "vidore/economics_reports_v2",
|
||||||
|
"revision": "b3e3a04b07fbbaffe79be49dabf92f691fbca252",
|
||||||
|
"languages": ["french", "spanish", "english", "german"],
|
||||||
|
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
|
||||||
|
},
|
||||||
|
"Vidore2BioMedicalLecturesRetrieval": {
|
||||||
|
"dataset_path": "vidore/biomedical_lectures_v2",
|
||||||
|
"revision": "a29202f0da409034d651614d87cd8938d254e2ea",
|
||||||
|
"languages": ["french", "spanish", "english", "german"],
|
||||||
|
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
|
||||||
|
},
|
||||||
|
"Vidore2ESGReportsHLRetrieval": {
|
||||||
|
"dataset_path": "vidore/esg_reports_human_labeled_v2",
|
||||||
|
"revision": "6d467dedb09a75144ede1421747e47cf036857dd",
|
||||||
|
# Note: This dataset doesn't have language filtering - all queries are English
|
||||||
|
"languages": None, # No language filtering needed
|
||||||
|
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def load_vidore_v2_data(
|
||||||
|
dataset_path: str,
|
||||||
|
revision: Optional[str] = None,
|
||||||
|
split: str = "test",
|
||||||
|
language: Optional[str] = None,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Load ViDoRe v2 dataset.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
corpus: dict mapping corpus_id to PIL Image
|
||||||
|
queries: dict mapping query_id to query text
|
||||||
|
qrels: dict mapping query_id to dict of {corpus_id: relevance_score}
|
||||||
|
"""
|
||||||
|
print(f"Loading dataset: {dataset_path} (split={split}, language={language})")
|
||||||
|
|
||||||
|
# Load queries
|
||||||
|
query_ds = load_dataset(dataset_path, "queries", split=split, revision=revision)
|
||||||
|
|
||||||
|
# Check if dataset has language field before filtering
|
||||||
|
has_language_field = len(query_ds) > 0 and "language" in query_ds.column_names
|
||||||
|
|
||||||
|
if language and has_language_field:
|
||||||
|
# Map language name to dataset language field value (e.g., "english" -> "eng-Latn")
|
||||||
|
dataset_language = LANGUAGE_MAPPING.get(language, language)
|
||||||
|
query_ds_filtered = query_ds.filter(lambda x: x.get("language") == dataset_language)
|
||||||
|
# Check if filtering resulted in empty dataset
|
||||||
|
if len(query_ds_filtered) == 0:
|
||||||
|
print(f"Warning: No queries found after filtering by language '{language}' (mapped to '{dataset_language}').")
|
||||||
|
# Try with original language value (dataset might use simple names like 'english')
|
||||||
|
print(f"Trying with original language value '{language}'...")
|
||||||
|
query_ds_filtered = query_ds.filter(lambda x: x.get("language") == language)
|
||||||
|
if len(query_ds_filtered) == 0:
|
||||||
|
# Try to get a sample to see actual language values
|
||||||
|
try:
|
||||||
|
sample_ds = load_dataset(dataset_path, "queries", split=split, revision=revision)
|
||||||
|
if len(sample_ds) > 0 and "language" in sample_ds.column_names:
|
||||||
|
sample_langs = set(sample_ds["language"])
|
||||||
|
print(f"Available language values in dataset: {sample_langs}")
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
print(f"Found {len(query_ds_filtered)} queries using original language value '{language}'")
|
||||||
|
query_ds = query_ds_filtered
|
||||||
|
|
||||||
|
queries = {}
|
||||||
|
for row in query_ds:
|
||||||
|
query_id = f"query-{split}-{row['query-id']}"
|
||||||
|
queries[query_id] = row["query"]
|
||||||
|
|
||||||
|
# Load corpus (images)
|
||||||
|
corpus_ds = load_dataset(dataset_path, "corpus", split=split, revision=revision)
|
||||||
|
|
||||||
|
corpus = {}
|
||||||
|
for row in corpus_ds:
|
||||||
|
corpus_id = f"corpus-{split}-{row['corpus-id']}"
|
||||||
|
# Extract image from the dataset row
|
||||||
|
if "image" in row:
|
||||||
|
corpus[corpus_id] = row["image"]
|
||||||
|
elif "page_image" in row:
|
||||||
|
corpus[corpus_id] = row["page_image"]
|
||||||
|
else:
|
||||||
|
raise ValueError(f"No image field found in corpus. Available fields: {list(row.keys())}")
|
||||||
|
|
||||||
|
# Load qrels (relevance judgments)
|
||||||
|
qrels_ds = load_dataset(dataset_path, "qrels", split=split, revision=revision)
|
||||||
|
|
||||||
|
qrels = {}
|
||||||
|
for row in qrels_ds:
|
||||||
|
query_id = f"query-{split}-{row['query-id']}"
|
||||||
|
corpus_id = f"corpus-{split}-{row['corpus-id']}"
|
||||||
|
if query_id not in qrels:
|
||||||
|
qrels[query_id] = {}
|
||||||
|
qrels[query_id][corpus_id] = int(row["score"])
|
||||||
|
|
||||||
|
print(f"Loaded {len(queries)} queries, {len(corpus)} corpus items, {len(qrels)} query-relevance mappings")
|
||||||
|
|
||||||
|
# Filter qrels to only include queries that exist
|
||||||
|
qrels = {qid: rel_docs for qid, rel_docs in qrels.items() if qid in queries}
|
||||||
|
|
||||||
|
return corpus, queries, qrels
|
||||||
|
|
||||||
|
|
||||||
|
def build_index_from_corpus(
|
||||||
|
corpus: dict[str, Image.Image],
|
||||||
|
model,
|
||||||
|
processor,
|
||||||
|
index_path: str,
|
||||||
|
use_fast_plaid: bool = False,
|
||||||
|
rebuild: bool = False,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Build index from corpus images.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
tuple: (retriever or fast_plaid_index object, list of corpus_ids in order)
|
||||||
|
"""
|
||||||
|
# Ensure consistent ordering
|
||||||
|
corpus_ids = sorted(corpus.keys()) # Sort for consistency
|
||||||
|
images = [corpus[cid] for cid in corpus_ids]
|
||||||
|
|
||||||
|
if use_fast_plaid:
|
||||||
|
# Check if Fast-Plaid index exists
|
||||||
|
if not rebuild and _load_fast_plaid_index_if_exists(index_path) is not None:
|
||||||
|
print(f"Fast-Plaid index already exists at {index_path}")
|
||||||
|
return _load_fast_plaid_index_if_exists(index_path), corpus_ids
|
||||||
|
|
||||||
|
print(f"Building Fast-Plaid index at {index_path}...")
|
||||||
|
|
||||||
|
# Embed images
|
||||||
|
print("Embedding images...")
|
||||||
|
doc_vecs = _embed_images(model, processor, images)
|
||||||
|
|
||||||
|
# Build index
|
||||||
|
fast_plaid_index, build_time = _build_fast_plaid_index(
|
||||||
|
index_path, doc_vecs, corpus_ids, images
|
||||||
|
)
|
||||||
|
print(f"Fast-Plaid index built in {build_time:.2f}s")
|
||||||
|
return fast_plaid_index, corpus_ids
|
||||||
|
else:
|
||||||
|
# Check if LEANN index exists
|
||||||
|
if not rebuild:
|
||||||
|
retriever = _load_retriever_if_index_exists(index_path)
|
||||||
|
if retriever is not None:
|
||||||
|
print(f"LEANN index already exists at {index_path}")
|
||||||
|
return retriever, corpus_ids
|
||||||
|
|
||||||
|
print(f"Building LEANN index at {index_path}...")
|
||||||
|
|
||||||
|
# Embed images
|
||||||
|
print("Embedding images...")
|
||||||
|
doc_vecs = _embed_images(model, processor, images)
|
||||||
|
|
||||||
|
# Build index
|
||||||
|
retriever = _build_index(index_path, doc_vecs, corpus_ids, images)
|
||||||
|
print(f"LEANN index built")
|
||||||
|
return retriever, corpus_ids
|
||||||
|
|
||||||
|
|
||||||
|
def search_queries(
|
||||||
|
queries: dict[str, str],
|
||||||
|
corpus_ids: list[str],
|
||||||
|
model,
|
||||||
|
processor,
|
||||||
|
index_or_retriever: Any,
|
||||||
|
use_fast_plaid: bool = False,
|
||||||
|
fast_plaid_index_path: Optional[str] = None,
|
||||||
|
top_k: int = 100,
|
||||||
|
first_stage_k: int = 500,
|
||||||
|
task_prompt: Optional[dict[str, str]] = None,
|
||||||
|
) -> dict[str, dict[str, float]]:
|
||||||
|
"""
|
||||||
|
Search queries against the index.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
queries: dict mapping query_id to query text
|
||||||
|
corpus_ids: list of corpus_ids in the same order as the index
|
||||||
|
model: model object
|
||||||
|
processor: processor object
|
||||||
|
index_or_retriever: index or retriever object
|
||||||
|
use_fast_plaid: whether using Fast-Plaid
|
||||||
|
fast_plaid_index_path: path to Fast-Plaid index (for metadata)
|
||||||
|
top_k: top-k results to retrieve
|
||||||
|
first_stage_k: first stage k for LEANN search
|
||||||
|
task_prompt: Optional dict with prompt for query (e.g., {"query": "..."})
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
results: dict mapping query_id to dict of {corpus_id: score}
|
||||||
|
"""
|
||||||
|
print(f"Searching {len(queries)} queries (top_k={top_k})...")
|
||||||
|
|
||||||
|
query_ids = list(queries.keys())
|
||||||
|
query_texts = [queries[qid] for qid in query_ids]
|
||||||
|
|
||||||
|
# Match MTEB: combine queries with instruction/prompt if provided
|
||||||
|
# MTEB's _combine_queries_with_instruction_text does: query + " " + instruction
|
||||||
|
if task_prompt and "query" in task_prompt:
|
||||||
|
instruction = task_prompt["query"]
|
||||||
|
query_texts = [q + " " + instruction for q in query_texts]
|
||||||
|
print(f"Added task prompt to queries: {instruction}")
|
||||||
|
|
||||||
|
# Embed queries
|
||||||
|
print("Embedding queries...")
|
||||||
|
query_vecs = _embed_queries(model, processor, query_texts)
|
||||||
|
|
||||||
|
results = {}
|
||||||
|
|
||||||
|
for query_id, query_vec in zip(tqdm(query_ids, desc="Searching"), query_vecs):
|
||||||
|
if use_fast_plaid:
|
||||||
|
# Fast-Plaid search
|
||||||
|
search_results, _ = _search_fast_plaid(index_or_retriever, query_vec, top_k)
|
||||||
|
# Convert doc_id back to corpus_id
|
||||||
|
query_results = {}
|
||||||
|
for score, doc_id in search_results:
|
||||||
|
if doc_id < len(corpus_ids):
|
||||||
|
corpus_id = corpus_ids[doc_id]
|
||||||
|
query_results[corpus_id] = float(score)
|
||||||
|
else:
|
||||||
|
# LEANN search
|
||||||
|
query_np = query_vec.float().numpy()
|
||||||
|
search_results = index_or_retriever.search_exact_all(query_np, topk=top_k)
|
||||||
|
# Convert doc_id back to corpus_id
|
||||||
|
query_results = {}
|
||||||
|
for score, doc_id in search_results:
|
||||||
|
if doc_id < len(corpus_ids):
|
||||||
|
corpus_id = corpus_ids[doc_id]
|
||||||
|
query_results[corpus_id] = float(score)
|
||||||
|
|
||||||
|
results[query_id] = query_results
|
||||||
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def evaluate_results(
|
||||||
|
results: dict[str, dict[str, float]],
|
||||||
|
qrels: dict[str, dict[str, int]],
|
||||||
|
k_values: list[int] = [1, 3, 5, 10, 100],
|
||||||
|
) -> dict[str, float]:
|
||||||
|
"""
|
||||||
|
Evaluate retrieval results using NDCG and other metrics.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Dictionary of metric scores
|
||||||
|
"""
|
||||||
|
if pytrec_eval is None:
|
||||||
|
raise ImportError("pytrec_eval is required for evaluation. Install with: pip install pytrec-eval")
|
||||||
|
|
||||||
|
# Check if we have any queries to evaluate
|
||||||
|
if len(results) == 0:
|
||||||
|
print("Warning: No queries to evaluate. Returning zero scores.")
|
||||||
|
# Return zero scores for all metrics
|
||||||
|
scores = {}
|
||||||
|
for k in k_values:
|
||||||
|
scores[f"ndcg_at_{k}"] = 0.0
|
||||||
|
scores[f"map_at_{k}"] = 0.0
|
||||||
|
scores[f"recall_at_{k}"] = 0.0
|
||||||
|
scores[f"precision_at_{k}"] = 0.0
|
||||||
|
scores[f"mrr_at_{k}"] = 0.0
|
||||||
|
return scores
|
||||||
|
|
||||||
|
print(f"Evaluating results with k_values={k_values}...")
|
||||||
|
|
||||||
|
# Convert qrels to pytrec_eval format
|
||||||
|
qrels_pytrec = {}
|
||||||
|
for qid, rel_docs in qrels.items():
|
||||||
|
qrels_pytrec[qid] = {did: score for did, score in rel_docs.items()}
|
||||||
|
|
||||||
|
# Evaluate
|
||||||
|
eval_result = calculate_retrieval_scores(
|
||||||
|
results=results,
|
||||||
|
qrels=qrels_pytrec,
|
||||||
|
k_values=k_values,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Format scores
|
||||||
|
scores = make_score_dict(
|
||||||
|
ndcg=eval_result.ndcg,
|
||||||
|
_map=eval_result.map,
|
||||||
|
recall=eval_result.recall,
|
||||||
|
precision=eval_result.precision,
|
||||||
|
mrr=eval_result.mrr,
|
||||||
|
naucs=eval_result.naucs,
|
||||||
|
naucs_mrr=eval_result.naucs_mrr,
|
||||||
|
cv_recall=eval_result.cv_recall,
|
||||||
|
task_scores={},
|
||||||
|
)
|
||||||
|
|
||||||
|
return scores
|
||||||
|
|
||||||
|
|
||||||
|
def evaluate_task(
|
||||||
|
task_name: str,
|
||||||
|
model_name: str,
|
||||||
|
index_path: str,
|
||||||
|
use_fast_plaid: bool = False,
|
||||||
|
fast_plaid_index_path: Optional[str] = None,
|
||||||
|
language: Optional[str] = None,
|
||||||
|
rebuild_index: bool = False,
|
||||||
|
top_k: int = 100,
|
||||||
|
first_stage_k: int = 500,
|
||||||
|
k_values: list[int] = [1, 3, 5, 10, 100],
|
||||||
|
output_dir: Optional[str] = None,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Evaluate a single ViDoRe v2 task.
|
||||||
|
"""
|
||||||
|
print(f"\n{'='*80}")
|
||||||
|
print(f"Evaluating task: {task_name}")
|
||||||
|
print(f"{'='*80}")
|
||||||
|
|
||||||
|
# Get task config
|
||||||
|
if task_name not in VIDORE_V2_TASKS:
|
||||||
|
raise ValueError(f"Unknown task: {task_name}. Available: {list(VIDORE_V2_TASKS.keys())}")
|
||||||
|
|
||||||
|
task_config = VIDORE_V2_TASKS[task_name]
|
||||||
|
dataset_path = task_config["dataset_path"]
|
||||||
|
revision = task_config["revision"]
|
||||||
|
|
||||||
|
# Determine language
|
||||||
|
if language is None:
|
||||||
|
# Use first language if multiple available
|
||||||
|
languages = task_config.get("languages")
|
||||||
|
if languages is None:
|
||||||
|
# Task doesn't support language filtering (e.g., Vidore2ESGReportsHLRetrieval)
|
||||||
|
language = None
|
||||||
|
elif len(languages) == 1:
|
||||||
|
language = languages[0]
|
||||||
|
else:
|
||||||
|
language = None
|
||||||
|
|
||||||
|
# Load data
|
||||||
|
corpus, queries, qrels = load_vidore_v2_data(
|
||||||
|
dataset_path=dataset_path,
|
||||||
|
revision=revision,
|
||||||
|
split="test",
|
||||||
|
language=language,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Check if we have any queries
|
||||||
|
if len(queries) == 0:
|
||||||
|
print(f"\nWarning: No queries found for task {task_name} with language {language}. Skipping evaluation.")
|
||||||
|
# Return zero scores
|
||||||
|
scores = {}
|
||||||
|
for k in k_values:
|
||||||
|
scores[f"ndcg_at_{k}"] = 0.0
|
||||||
|
scores[f"map_at_{k}"] = 0.0
|
||||||
|
scores[f"recall_at_{k}"] = 0.0
|
||||||
|
scores[f"precision_at_{k}"] = 0.0
|
||||||
|
scores[f"mrr_at_{k}"] = 0.0
|
||||||
|
return scores
|
||||||
|
|
||||||
|
# Load model
|
||||||
|
print(f"\nLoading model: {model_name}")
|
||||||
|
model_name_actual, model, processor, device_str, device, dtype = _load_colvision(model_name)
|
||||||
|
print(f"Model loaded: {model_name_actual}")
|
||||||
|
|
||||||
|
# Build or load index
|
||||||
|
index_path_full = index_path if not use_fast_plaid else fast_plaid_index_path
|
||||||
|
if index_path_full is None:
|
||||||
|
index_path_full = f"./indexes/{task_name}_{model_name}"
|
||||||
|
if use_fast_plaid:
|
||||||
|
index_path_full = f"./indexes/{task_name}_{model_name}_fastplaid"
|
||||||
|
|
||||||
|
index_or_retriever, corpus_ids_ordered = build_index_from_corpus(
|
||||||
|
corpus=corpus,
|
||||||
|
model=model,
|
||||||
|
processor=processor,
|
||||||
|
index_path=index_path_full,
|
||||||
|
use_fast_plaid=use_fast_plaid,
|
||||||
|
rebuild=rebuild_index,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Search queries
|
||||||
|
task_prompt = task_config.get("prompt")
|
||||||
|
results = search_queries(
|
||||||
|
queries=queries,
|
||||||
|
corpus_ids=corpus_ids_ordered,
|
||||||
|
model=model,
|
||||||
|
processor=processor,
|
||||||
|
index_or_retriever=index_or_retriever,
|
||||||
|
use_fast_plaid=use_fast_plaid,
|
||||||
|
fast_plaid_index_path=fast_plaid_index_path,
|
||||||
|
top_k=top_k,
|
||||||
|
first_stage_k=first_stage_k,
|
||||||
|
task_prompt=task_prompt,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Evaluate
|
||||||
|
scores = evaluate_results(results, qrels, k_values=k_values)
|
||||||
|
|
||||||
|
# Print results
|
||||||
|
print(f"\n{'='*80}")
|
||||||
|
print(f"Results for {task_name}:")
|
||||||
|
print(f"{'='*80}")
|
||||||
|
for metric, value in scores.items():
|
||||||
|
if isinstance(value, (int, float)):
|
||||||
|
print(f" {metric}: {value:.5f}")
|
||||||
|
|
||||||
|
# Save results
|
||||||
|
if output_dir:
|
||||||
|
os.makedirs(output_dir, exist_ok=True)
|
||||||
|
results_file = os.path.join(output_dir, f"{task_name}_results.json")
|
||||||
|
scores_file = os.path.join(output_dir, f"{task_name}_scores.json")
|
||||||
|
|
||||||
|
with open(results_file, "w") as f:
|
||||||
|
json.dump(results, f, indent=2)
|
||||||
|
print(f"\nSaved results to: {results_file}")
|
||||||
|
|
||||||
|
with open(scores_file, "w") as f:
|
||||||
|
json.dump(scores, f, indent=2)
|
||||||
|
print(f"Saved scores to: {scores_file}")
|
||||||
|
|
||||||
|
return scores
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description="Evaluate ViDoRe v2 benchmark using LEANN/Fast-Plaid indexing"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--model",
|
||||||
|
type=str,
|
||||||
|
default="colqwen2",
|
||||||
|
choices=["colqwen2", "colpali"],
|
||||||
|
help="Model to use",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--task",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Specific task to evaluate (or 'all' for all tasks)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--tasks",
|
||||||
|
type=str,
|
||||||
|
default="all",
|
||||||
|
help="Tasks to evaluate: 'all' or comma-separated list",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--index-path",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Path to LEANN index (auto-generated if not provided)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-fast-plaid",
|
||||||
|
action="store_true",
|
||||||
|
help="Use Fast-Plaid instead of LEANN",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--fast-plaid-index-path",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Path to Fast-Plaid index (auto-generated if not provided)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--rebuild-index",
|
||||||
|
action="store_true",
|
||||||
|
help="Rebuild index even if it exists",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--language",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Language to evaluate (default: first available)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--top-k",
|
||||||
|
type=int,
|
||||||
|
default=100,
|
||||||
|
help="Top-k results to retrieve",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--first-stage-k",
|
||||||
|
type=int,
|
||||||
|
default=500,
|
||||||
|
help="First stage k for LEANN search",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--k-values",
|
||||||
|
type=str,
|
||||||
|
default="1,3,5,10,100",
|
||||||
|
help="Comma-separated k values for evaluation (e.g., '1,3,5,10,100')",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--output-dir",
|
||||||
|
type=str,
|
||||||
|
default="./vidore_v2_results",
|
||||||
|
help="Output directory for results",
|
||||||
|
)
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# Parse k_values
|
||||||
|
k_values = [int(k.strip()) for k in args.k_values.split(",")]
|
||||||
|
|
||||||
|
# Determine tasks to evaluate
|
||||||
|
if args.task:
|
||||||
|
tasks_to_eval = [args.task]
|
||||||
|
elif args.tasks.lower() == "all":
|
||||||
|
tasks_to_eval = list(VIDORE_V2_TASKS.keys())
|
||||||
|
else:
|
||||||
|
tasks_to_eval = [t.strip() for t in args.tasks.split(",")]
|
||||||
|
|
||||||
|
print(f"Tasks to evaluate: {tasks_to_eval}")
|
||||||
|
|
||||||
|
# Evaluate each task
|
||||||
|
all_scores = {}
|
||||||
|
for task_name in tasks_to_eval:
|
||||||
|
try:
|
||||||
|
scores = evaluate_task(
|
||||||
|
task_name=task_name,
|
||||||
|
model_name=args.model,
|
||||||
|
index_path=args.index_path,
|
||||||
|
use_fast_plaid=args.use_fast_plaid,
|
||||||
|
fast_plaid_index_path=args.fast_plaid_index_path,
|
||||||
|
language=args.language,
|
||||||
|
rebuild_index=args.rebuild_index,
|
||||||
|
top_k=args.top_k,
|
||||||
|
first_stage_k=args.first_stage_k,
|
||||||
|
k_values=k_values,
|
||||||
|
output_dir=args.output_dir,
|
||||||
|
)
|
||||||
|
all_scores[task_name] = scores
|
||||||
|
except Exception as e:
|
||||||
|
print(f"\nError evaluating {task_name}: {e}")
|
||||||
|
import traceback
|
||||||
|
traceback.print_exc()
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Print summary
|
||||||
|
if all_scores:
|
||||||
|
print(f"\n{'='*80}")
|
||||||
|
print("SUMMARY")
|
||||||
|
print(f"{'='*80}")
|
||||||
|
for task_name, scores in all_scores.items():
|
||||||
|
print(f"\n{task_name}:")
|
||||||
|
# Print main metrics
|
||||||
|
for metric in ["ndcg_at_5", "ndcg_at_10", "ndcg_at_100", "map_at_10", "recall_at_10"]:
|
||||||
|
if metric in scores:
|
||||||
|
print(f" {metric}: {scores[metric]:.5f}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
|
|
||||||
Reference in New Issue
Block a user