refactor: reorgnize all examples/ and test/
This commit is contained in:
151
benchmarks/faiss_only.py
Normal file
151
benchmarks/faiss_only.py
Normal file
@@ -0,0 +1,151 @@
|
||||
#!/usr/bin/env python3
|
||||
"""Test only Faiss HNSW"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
|
||||
import psutil
|
||||
|
||||
|
||||
def get_memory_usage():
|
||||
process = psutil.Process()
|
||||
return process.memory_info().rss / 1024 / 1024
|
||||
|
||||
|
||||
class MemoryTracker:
|
||||
def __init__(self, name: str):
|
||||
self.name = name
|
||||
self.start_mem = get_memory_usage()
|
||||
self.stages = []
|
||||
|
||||
def checkpoint(self, stage: str):
|
||||
current_mem = get_memory_usage()
|
||||
diff = current_mem - self.start_mem
|
||||
print(f"[{self.name} - {stage}] Memory: {current_mem:.1f} MB (+{diff:.1f} MB)")
|
||||
self.stages.append((stage, current_mem))
|
||||
return current_mem
|
||||
|
||||
def summary(self):
|
||||
peak_mem = max(mem for _, mem in self.stages)
|
||||
print(f"Peak Memory: {peak_mem:.1f} MB")
|
||||
return peak_mem
|
||||
|
||||
|
||||
def main():
|
||||
try:
|
||||
import faiss
|
||||
except ImportError:
|
||||
print("Faiss is not installed.")
|
||||
print(
|
||||
"Please install it with `uv pip install faiss-cpu` and you can then run this script again"
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
from llama_index.core import (
|
||||
Settings,
|
||||
SimpleDirectoryReader,
|
||||
StorageContext,
|
||||
VectorStoreIndex,
|
||||
)
|
||||
from llama_index.core.node_parser import SentenceSplitter
|
||||
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
||||
from llama_index.vector_stores.faiss import FaissVectorStore
|
||||
|
||||
tracker = MemoryTracker("Faiss HNSW")
|
||||
tracker.checkpoint("Initial")
|
||||
|
||||
embed_model = HuggingFaceEmbedding(model_name="facebook/contriever")
|
||||
Settings.embed_model = embed_model
|
||||
tracker.checkpoint("After embedding model setup")
|
||||
|
||||
d = 768
|
||||
faiss_index = faiss.IndexHNSWFlat(d, 32)
|
||||
faiss_index.hnsw.efConstruction = 64
|
||||
tracker.checkpoint("After Faiss index creation")
|
||||
|
||||
documents = SimpleDirectoryReader(
|
||||
"data",
|
||||
recursive=True,
|
||||
encoding="utf-8",
|
||||
required_exts=[".pdf", ".txt", ".md"],
|
||||
).load_data()
|
||||
tracker.checkpoint("After document loading")
|
||||
|
||||
# Parse into chunks using the same splitter as LEANN
|
||||
node_parser = SentenceSplitter(
|
||||
chunk_size=256, chunk_overlap=20, separator=" ", paragraph_separator="\n\n"
|
||||
)
|
||||
|
||||
tracker.checkpoint("After text splitter setup")
|
||||
|
||||
# Check if index already exists and try to load it
|
||||
index_loaded = False
|
||||
if os.path.exists("./storage_faiss"):
|
||||
print("Loading existing Faiss HNSW index...")
|
||||
try:
|
||||
# Use the correct Faiss loading pattern from the example
|
||||
vector_store = FaissVectorStore.from_persist_dir("./storage_faiss")
|
||||
storage_context = StorageContext.from_defaults(
|
||||
vector_store=vector_store, persist_dir="./storage_faiss"
|
||||
)
|
||||
from llama_index.core import load_index_from_storage
|
||||
|
||||
index = load_index_from_storage(storage_context=storage_context)
|
||||
print("Index loaded from ./storage_faiss")
|
||||
tracker.checkpoint("After loading existing index")
|
||||
index_loaded = True
|
||||
except Exception as e:
|
||||
print(f"Failed to load existing index: {e}")
|
||||
print("Cleaning up corrupted index and building new one...")
|
||||
# Clean up corrupted index
|
||||
import shutil
|
||||
|
||||
if os.path.exists("./storage_faiss"):
|
||||
shutil.rmtree("./storage_faiss")
|
||||
|
||||
if not index_loaded:
|
||||
print("Building new Faiss HNSW index...")
|
||||
|
||||
# Use the correct Faiss building pattern from the example
|
||||
vector_store = FaissVectorStore(faiss_index=faiss_index)
|
||||
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
||||
index = VectorStoreIndex.from_documents(
|
||||
documents, storage_context=storage_context, transformations=[node_parser]
|
||||
)
|
||||
tracker.checkpoint("After index building")
|
||||
|
||||
# Save index to disk using the correct pattern
|
||||
index.storage_context.persist(persist_dir="./storage_faiss")
|
||||
tracker.checkpoint("After index saving")
|
||||
|
||||
# Measure runtime memory overhead
|
||||
print("\nMeasuring runtime memory overhead...")
|
||||
runtime_start_mem = get_memory_usage()
|
||||
print(f"Before load memory: {runtime_start_mem:.1f} MB")
|
||||
tracker.checkpoint("Before load memory")
|
||||
|
||||
query_engine = index.as_query_engine(similarity_top_k=20)
|
||||
queries = [
|
||||
"什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发",
|
||||
"What is LEANN and how does it work?",
|
||||
"华为诺亚方舟实验室的主要研究内容",
|
||||
]
|
||||
|
||||
for i, query in enumerate(queries):
|
||||
start_time = time.time()
|
||||
_ = query_engine.query(query)
|
||||
query_time = time.time() - start_time
|
||||
print(f"Query {i + 1} time: {query_time:.3f}s")
|
||||
tracker.checkpoint(f"After query {i + 1}")
|
||||
|
||||
runtime_end_mem = get_memory_usage()
|
||||
runtime_overhead = runtime_end_mem - runtime_start_mem
|
||||
|
||||
peak_memory = tracker.summary()
|
||||
print(f"Peak Memory: {peak_memory:.1f} MB")
|
||||
print(f"Runtime Memory Overhead: {runtime_overhead:.1f} MB")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user