benchmarks: fix and extend HNSW+DiskANN recompute vs no-recompute; docs: add fresh numbers and DiskANN notes

This commit is contained in:
Andy Lee
2025-08-14 12:18:07 -07:00
parent 79ca32e87b
commit b13b52e78c
4 changed files with 94 additions and 5 deletions

View File

@@ -84,6 +84,80 @@ def main():
)
print("Expectation: no-recompute should be faster but larger on disk.")
# DiskANN quick benchmark (final rerank vs no-recompute)
try:
index_path_diskann_nr = str(base / "diskann_nr.leann")
index_path_diskann_r = str(base / "diskann_r.leann")
# Build DiskANN no-recompute (keeps full disk index)
if not (
Path(index_path_diskann_nr).parent / f"{Path(index_path_diskann_nr).stem}.meta.json"
).exists():
b = LeannBuilder(
backend_name="diskann",
embedding_model=os.getenv("LEANN_EMBED_MODEL", "facebook/contriever"),
embedding_mode=os.getenv("LEANN_EMBED_MODE", "sentence-transformers"),
graph_degree=32,
complexity=64,
num_threads=4,
is_recompute=False,
)
for i in range(5000):
b.add_text(f"DiskANN NR test doc {i} for quick benchmark.")
b.build_index(index_path_diskann_nr)
# Build DiskANN recompute (enables partition; prunes redundant files)
if not (
Path(index_path_diskann_r).parent / f"{Path(index_path_diskann_r).stem}.meta.json"
).exists():
b = LeannBuilder(
backend_name="diskann",
embedding_model=os.getenv("LEANN_EMBED_MODEL", "facebook/contriever"),
embedding_mode=os.getenv("LEANN_EMBED_MODE", "sentence-transformers"),
graph_degree=32,
complexity=64,
num_threads=4,
is_recompute=True,
)
for i in range(5000):
b.add_text(f"DiskANN R test doc {i} for quick benchmark.")
b.build_index(index_path_diskann_r)
# Measure size per build prefix
def _size_for(prefix: str) -> int:
p = Path(prefix)
base_dir = p.parent
stem = p.stem
total = 0
for f in base_dir.iterdir():
if f.is_file() and f.name.startswith(stem):
total += f.stat().st_size
return total
size_diskann_nr = _size_for(index_path_diskann_nr)
size_diskann_r = _size_for(index_path_diskann_r)
# Speed on recompute-build (final rerank vs no-recompute)
s = LeannSearcher(index_path_diskann_r)
_ = s.search("DiskANN R test doc 123", top_k=10, complexity=64, recompute_embeddings=False)
_ = s.search("DiskANN R test doc 123", top_k=10, complexity=64, recompute_embeddings=True)
t0 = time.time()
_ = s.search("DiskANN R test doc 123", top_k=10, complexity=64, recompute_embeddings=False)
t_diskann_nr = time.time() - t0
t0 = time.time()
_ = s.search("DiskANN R test doc 123", top_k=10, complexity=64, recompute_embeddings=True)
t_diskann_r = time.time() - t0
print("\nBenchmark results (DiskANN):")
print(f" build(recompute=False): size={size_diskann_nr / 1024 / 1024:.1f}MB")
print(f" build(recompute=True, partition): size={size_diskann_r / 1024 / 1024:.1f}MB")
print(f" search recompute=False: {t_diskann_nr:.3f}s (on recompute-build)")
print(f" search recompute=True (final rerank): {t_diskann_r:.3f}s (on recompute-build)")
except Exception as e:
print(f"DiskANN quick benchmark skipped due to: {e}")
if __name__ == "__main__":
main()