benchmarks: fix and extend HNSW+DiskANN recompute vs no-recompute; docs: add fresh numbers and DiskANN notes

This commit is contained in:
Andy Lee
2025-08-14 12:18:07 -07:00
parent 79ca32e87b
commit b13b52e78c
4 changed files with 94 additions and 5 deletions

View File

@@ -442,8 +442,14 @@ class DiskannSearcher(BaseSearcher):
use_global_pruning = True
# Perform search with suppressed C++ output based on log level
use_deferred_fetch = kwargs.get("USE_DEFERRED_FETCH", True)
# Strategy:
# - Traversal always uses PQ distances
# - If recompute_embeddings=True, do a single final rerank via deferred fetch
# (fetch embeddings for the final candidate set only)
# - Do not recompute neighbor distances along the path
use_deferred_fetch = True if recompute_embeddings else False
recompute_neighors = False
with suppress_cpp_output_if_needed():
labels, distances = self._index.batch_search(
query,

View File

@@ -422,7 +422,6 @@ class LLMInterface(ABC):
top_k=10,
complexity=64,
beam_width=8,
USE_DEFERRED_FETCH=True,
skip_search_reorder=True,
recompute_beighbor_embeddings=True,
dedup_node_dis=True,
@@ -434,7 +433,6 @@ class LLMInterface(ABC):
Supported kwargs:
- complexity (int): Search complexity parameter (default: 32)
- beam_width (int): Beam width for search (default: 4)
- USE_DEFERRED_FETCH (bool): Enable deferred fetch mode (default: False)
- skip_search_reorder (bool): Skip search reorder step (default: False)
- recompute_beighbor_embeddings (bool): Enable ZMQ embedding server for neighbor recomputation (default: False)
- dedup_node_dis (bool): Deduplicate nodes by distance (default: False)