fix: resolve all ruff linting errors and add lint CI check
- Fix ambiguous fullwidth characters (commas, parentheses) in strings and comments - Replace Chinese comments with English equivalents - Fix unused imports with proper noqa annotations for intentional imports - Fix bare except clauses with specific exception types - Fix redefined variables and undefined names - Add ruff noqa annotations for generated protobuf files - Add lint and format check to GitHub Actions CI pipeline
This commit is contained in:
@@ -5,24 +5,21 @@ It correctly compares results by fetching the text content for both the new sear
|
||||
results and the golden standard results, making the comparison robust to ID changes.
|
||||
"""
|
||||
|
||||
import json
|
||||
import argparse
|
||||
import json
|
||||
import sys
|
||||
import time
|
||||
from pathlib import Path
|
||||
import sys
|
||||
import numpy as np
|
||||
from typing import List
|
||||
|
||||
from leann.api import LeannSearcher, LeannBuilder
|
||||
import numpy as np
|
||||
from leann.api import LeannBuilder, LeannSearcher
|
||||
|
||||
|
||||
def download_data_if_needed(data_root: Path, download_embeddings: bool = False):
|
||||
"""Checks if the data directory exists, and if not, downloads it from HF Hub."""
|
||||
if not data_root.exists():
|
||||
print(f"Data directory '{data_root}' not found.")
|
||||
print(
|
||||
"Downloading evaluation data from Hugging Face Hub... (this may take a moment)"
|
||||
)
|
||||
print("Downloading evaluation data from Hugging Face Hub... (this may take a moment)")
|
||||
try:
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
@@ -63,7 +60,7 @@ def download_data_if_needed(data_root: Path, download_embeddings: bool = False):
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
def download_embeddings_if_needed(data_root: Path, dataset_type: str = None):
|
||||
def download_embeddings_if_needed(data_root: Path, dataset_type: str | None = None):
|
||||
"""Download embeddings files specifically."""
|
||||
embeddings_dir = data_root / "embeddings"
|
||||
|
||||
@@ -101,7 +98,7 @@ def download_embeddings_if_needed(data_root: Path, dataset_type: str = None):
|
||||
|
||||
|
||||
# --- Helper Function to get Golden Passages ---
|
||||
def get_golden_texts(searcher: LeannSearcher, golden_ids: List[int]) -> set:
|
||||
def get_golden_texts(searcher: LeannSearcher, golden_ids: list[int]) -> set:
|
||||
"""
|
||||
Retrieves the text for golden passage IDs directly from the LeannSearcher's
|
||||
passage manager.
|
||||
@@ -113,24 +110,20 @@ def get_golden_texts(searcher: LeannSearcher, golden_ids: List[int]) -> set:
|
||||
passage_data = searcher.passage_manager.get_passage(str(gid))
|
||||
golden_texts.add(passage_data["text"])
|
||||
except KeyError:
|
||||
print(
|
||||
f"Warning: Golden passage ID '{gid}' not found in the index's passage data."
|
||||
)
|
||||
print(f"Warning: Golden passage ID '{gid}' not found in the index's passage data.")
|
||||
return golden_texts
|
||||
|
||||
|
||||
def load_queries(file_path: Path) -> List[str]:
|
||||
def load_queries(file_path: Path) -> list[str]:
|
||||
queries = []
|
||||
with open(file_path, "r", encoding="utf-8") as f:
|
||||
with open(file_path, encoding="utf-8") as f:
|
||||
for line in f:
|
||||
data = json.loads(line)
|
||||
queries.append(data["query"])
|
||||
return queries
|
||||
|
||||
|
||||
def build_index_from_embeddings(
|
||||
embeddings_file: str, output_path: str, backend: str = "hnsw"
|
||||
):
|
||||
def build_index_from_embeddings(embeddings_file: str, output_path: str, backend: str = "hnsw"):
|
||||
"""
|
||||
Build a LEANN index from pre-computed embeddings.
|
||||
|
||||
@@ -173,9 +166,7 @@ def build_index_from_embeddings(
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Run recall evaluation on a LEANN index."
|
||||
)
|
||||
parser = argparse.ArgumentParser(description="Run recall evaluation on a LEANN index.")
|
||||
parser.add_argument(
|
||||
"index_path",
|
||||
type=str,
|
||||
@@ -202,9 +193,7 @@ def main():
|
||||
parser.add_argument(
|
||||
"--num-queries", type=int, default=10, help="Number of queries to evaluate."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--top-k", type=int, default=3, help="The 'k' value for recall@k."
|
||||
)
|
||||
parser.add_argument("--top-k", type=int, default=3, help="The 'k' value for recall@k.")
|
||||
parser.add_argument(
|
||||
"--ef-search", type=int, default=120, help="The 'efSearch' parameter for HNSW."
|
||||
)
|
||||
@@ -219,9 +208,7 @@ def main():
|
||||
# Download data based on mode
|
||||
if args.mode == "build":
|
||||
# For building mode, we need embeddings
|
||||
download_data_if_needed(
|
||||
data_root, download_embeddings=False
|
||||
) # Basic data first
|
||||
download_data_if_needed(data_root, download_embeddings=False) # Basic data first
|
||||
|
||||
# Auto-detect dataset type and download embeddings
|
||||
if args.embeddings_file:
|
||||
@@ -262,9 +249,7 @@ def main():
|
||||
print(f"Index built successfully: {built_index_path}")
|
||||
|
||||
# Ask if user wants to run evaluation
|
||||
eval_response = (
|
||||
input("Run evaluation on the built index? (y/n): ").strip().lower()
|
||||
)
|
||||
eval_response = input("Run evaluation on the built index? (y/n): ").strip().lower()
|
||||
if eval_response != "y":
|
||||
print("Index building complete. Exiting.")
|
||||
return
|
||||
@@ -293,12 +278,8 @@ def main():
|
||||
break
|
||||
|
||||
if not args.index_path:
|
||||
print(
|
||||
"No indices found. The data download should have included pre-built indices."
|
||||
)
|
||||
print(
|
||||
"Please check the data/indices/ directory or provide --index-path manually."
|
||||
)
|
||||
print("No indices found. The data download should have included pre-built indices.")
|
||||
print("Please check the data/indices/ directory or provide --index-path manually.")
|
||||
sys.exit(1)
|
||||
|
||||
# Detect dataset type from index path to select the correct ground truth
|
||||
@@ -310,14 +291,10 @@ def main():
|
||||
else:
|
||||
# Fallback: try to infer from the index directory name
|
||||
dataset_type = Path(args.index_path).name
|
||||
print(
|
||||
f"WARNING: Could not detect dataset type from path, inferred '{dataset_type}'."
|
||||
)
|
||||
print(f"WARNING: Could not detect dataset type from path, inferred '{dataset_type}'.")
|
||||
|
||||
queries_file = data_root / "queries" / "nq_open.jsonl"
|
||||
golden_results_file = (
|
||||
data_root / "ground_truth" / dataset_type / "flat_results_nq_k3.json"
|
||||
)
|
||||
golden_results_file = data_root / "ground_truth" / dataset_type / "flat_results_nq_k3.json"
|
||||
|
||||
print(f"INFO: Detected dataset type: {dataset_type}")
|
||||
print(f"INFO: Using queries file: {queries_file}")
|
||||
@@ -327,7 +304,7 @@ def main():
|
||||
searcher = LeannSearcher(args.index_path)
|
||||
queries = load_queries(queries_file)
|
||||
|
||||
with open(golden_results_file, "r") as f:
|
||||
with open(golden_results_file) as f:
|
||||
golden_results_data = json.load(f)
|
||||
|
||||
num_eval_queries = min(args.num_queries, len(queries))
|
||||
@@ -339,9 +316,7 @@ def main():
|
||||
|
||||
for i in range(num_eval_queries):
|
||||
start_time = time.time()
|
||||
new_results = searcher.search(
|
||||
queries[i], top_k=args.top_k, ef=args.ef_search
|
||||
)
|
||||
new_results = searcher.search(queries[i], top_k=args.top_k, ef=args.ef_search)
|
||||
search_times.append(time.time() - start_time)
|
||||
|
||||
# Correct Recall Calculation: Based on TEXT content
|
||||
|
||||
Reference in New Issue
Block a user