feat: auto discovery of packages and fix passage gen for diskann
This commit is contained in:
@@ -10,7 +10,6 @@ import asyncio
|
|||||||
import os
|
import os
|
||||||
import dotenv
|
import dotenv
|
||||||
from leann.api import LeannBuilder, LeannSearcher, LeannChat
|
from leann.api import LeannBuilder, LeannSearcher, LeannChat
|
||||||
import leann_backend_hnsw # Import to ensure backend registration
|
|
||||||
import shutil
|
import shutil
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
@@ -39,7 +38,7 @@ all_texts = []
|
|||||||
for doc in documents:
|
for doc in documents:
|
||||||
nodes = node_parser.get_nodes_from_documents([doc])
|
nodes = node_parser.get_nodes_from_documents([doc])
|
||||||
for node in nodes:
|
for node in nodes:
|
||||||
all_texts.append(node.text)
|
all_texts.append(node.get_content())
|
||||||
|
|
||||||
INDEX_DIR = Path("./test_pdf_index")
|
INDEX_DIR = Path("./test_pdf_index")
|
||||||
INDEX_PATH = str(INDEX_DIR / "pdf_documents.leann")
|
INDEX_PATH = str(INDEX_DIR / "pdf_documents.leann")
|
||||||
@@ -51,7 +50,7 @@ if not INDEX_DIR.exists():
|
|||||||
|
|
||||||
# CSR compact mode with recompute
|
# CSR compact mode with recompute
|
||||||
builder = LeannBuilder(
|
builder = LeannBuilder(
|
||||||
backend_name="hnsw",
|
backend_name="diskann",
|
||||||
embedding_model="facebook/contriever",
|
embedding_model="facebook/contriever",
|
||||||
graph_degree=32,
|
graph_degree=32,
|
||||||
complexity=64,
|
complexity=64,
|
||||||
@@ -74,7 +73,7 @@ async def main():
|
|||||||
|
|
||||||
query = "Based on the paper, what are the main techniques LEANN explores to reduce the storage overhead and DLPM explore to achieve Fairness and Efiiciency trade-off?"
|
query = "Based on the paper, what are the main techniques LEANN explores to reduce the storage overhead and DLPM explore to achieve Fairness and Efiiciency trade-off?"
|
||||||
print(f"You: {query}")
|
print(f"You: {query}")
|
||||||
chat_response = chat.ask(query, top_k=20, recompute_beighbor_embeddings=True,embedding_model="facebook/contriever")
|
chat_response = chat.ask(query, top_k=20, recompute_beighbor_embeddings=True)
|
||||||
print(f"Leann: {chat_response}")
|
print(f"Leann: {chat_response}")
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|||||||
@@ -67,6 +67,26 @@ class DiskannBuilder(LeannBackendBuilderInterface):
|
|||||||
def __init__(self, **kwargs):
|
def __init__(self, **kwargs):
|
||||||
self.build_params = kwargs
|
self.build_params = kwargs
|
||||||
|
|
||||||
|
def _generate_passages_file(self, index_dir: Path, index_prefix: str, **kwargs):
|
||||||
|
"""Generate passages file for recompute mode, mirroring HNSW backend."""
|
||||||
|
try:
|
||||||
|
chunks = kwargs.get('chunks', [])
|
||||||
|
if not chunks:
|
||||||
|
print("INFO: No chunks data provided, skipping passages file generation for DiskANN.")
|
||||||
|
return
|
||||||
|
|
||||||
|
passages_data = {str(node_id): chunk["text"] for node_id, chunk in enumerate(chunks)}
|
||||||
|
|
||||||
|
passages_file = index_dir / f"{index_prefix}.passages.json"
|
||||||
|
with open(passages_file, 'w', encoding='utf-8') as f:
|
||||||
|
json.dump(passages_data, f, ensure_ascii=False, indent=2)
|
||||||
|
|
||||||
|
print(f"✅ Generated passages file for recompute mode at '{passages_file}' ({len(passages_data)} passages)")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"💥 ERROR: Failed to generate passages file for DiskANN. Exception: {e}")
|
||||||
|
pass
|
||||||
|
|
||||||
def build(self, data: np.ndarray, index_path: str, **kwargs):
|
def build(self, data: np.ndarray, index_path: str, **kwargs):
|
||||||
path = Path(index_path)
|
path = Path(index_path)
|
||||||
index_dir = path.parent
|
index_dir = path.parent
|
||||||
@@ -95,6 +115,7 @@ class DiskannBuilder(LeannBackendBuilderInterface):
|
|||||||
num_threads = build_kwargs.get("num_threads", 8)
|
num_threads = build_kwargs.get("num_threads", 8)
|
||||||
pq_disk_bytes = build_kwargs.get("pq_disk_bytes", 0)
|
pq_disk_bytes = build_kwargs.get("pq_disk_bytes", 0)
|
||||||
codebook_prefix = ""
|
codebook_prefix = ""
|
||||||
|
is_recompute = build_kwargs.get("is_recompute", False)
|
||||||
|
|
||||||
print(f"INFO: Building DiskANN index for {data.shape[0]} vectors with metric {metric_enum}...")
|
print(f"INFO: Building DiskANN index for {data.shape[0]} vectors with metric {metric_enum}...")
|
||||||
|
|
||||||
@@ -113,6 +134,8 @@ class DiskannBuilder(LeannBackendBuilderInterface):
|
|||||||
codebook_prefix
|
codebook_prefix
|
||||||
)
|
)
|
||||||
print(f"✅ DiskANN index built successfully at '{index_dir / index_prefix}'")
|
print(f"✅ DiskANN index built successfully at '{index_dir / index_prefix}'")
|
||||||
|
if is_recompute:
|
||||||
|
self._generate_passages_file(index_dir, index_prefix, **build_kwargs)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"💥 ERROR: DiskANN index build failed. Exception: {e}")
|
print(f"💥 ERROR: DiskANN index build failed. Exception: {e}")
|
||||||
raise
|
raise
|
||||||
@@ -141,17 +164,17 @@ class DiskannSearcher(LeannBackendSearcherInterface):
|
|||||||
print("WARNING: embedding_model not found in meta.json. Recompute will fail if attempted.")
|
print("WARNING: embedding_model not found in meta.json. Recompute will fail if attempted.")
|
||||||
|
|
||||||
path = Path(index_path)
|
path = Path(index_path)
|
||||||
index_dir = path.parent
|
self.index_dir = path.parent
|
||||||
index_prefix = path.stem
|
self.index_prefix = path.stem
|
||||||
|
|
||||||
num_threads = kwargs.get("num_threads", 8)
|
num_threads = kwargs.get("num_threads", 8)
|
||||||
num_nodes_to_cache = kwargs.get("num_nodes_to_cache", 0)
|
num_nodes_to_cache = kwargs.get("num_nodes_to_cache", 0)
|
||||||
zmq_port = kwargs.get("zmq_port", 5555) # Get zmq_port from kwargs
|
self.zmq_port = kwargs.get("zmq_port", 6666)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
full_index_prefix = str(index_dir / index_prefix)
|
full_index_prefix = str(self.index_dir / self.index_prefix)
|
||||||
self._index = diskannpy.StaticDiskFloatIndex(
|
self._index = diskannpy.StaticDiskFloatIndex(
|
||||||
metric_enum, full_index_prefix, num_threads, num_nodes_to_cache, 1, zmq_port, "", ""
|
metric_enum, full_index_prefix, num_threads, num_nodes_to_cache, 1, self.zmq_port, "", ""
|
||||||
)
|
)
|
||||||
self.num_threads = num_threads
|
self.num_threads = num_threads
|
||||||
self.embedding_server_manager = EmbeddingServerManager(
|
self.embedding_server_manager = EmbeddingServerManager(
|
||||||
@@ -173,23 +196,36 @@ class DiskannSearcher(LeannBackendSearcherInterface):
|
|||||||
prune_ratio = kwargs.get("prune_ratio", 0.0)
|
prune_ratio = kwargs.get("prune_ratio", 0.0)
|
||||||
batch_recompute = kwargs.get("batch_recompute", False)
|
batch_recompute = kwargs.get("batch_recompute", False)
|
||||||
global_pruning = kwargs.get("global_pruning", False)
|
global_pruning = kwargs.get("global_pruning", False)
|
||||||
|
port = kwargs.get("zmq_port", self.zmq_port)
|
||||||
|
|
||||||
if recompute_beighbor_embeddings:
|
if recompute_beighbor_embeddings:
|
||||||
print(f"INFO: DiskANN ZMQ mode enabled - ensuring embedding server is running")
|
print(f"INFO: DiskANN ZMQ mode enabled - ensuring embedding server is running")
|
||||||
if not self.embedding_model:
|
if not self.embedding_model:
|
||||||
raise ValueError("Cannot use recompute_beighbor_embeddings without 'embedding_model' in meta.json.")
|
raise ValueError("Cannot use recompute_beighbor_embeddings without 'embedding_model' in meta.json.")
|
||||||
|
|
||||||
zmq_port = kwargs.get("zmq_port", 6666)
|
passages_file = kwargs.get("passages_file")
|
||||||
|
if not passages_file:
|
||||||
|
potential_passages_file = self.index_dir / f"{self.index_prefix}.passages.json"
|
||||||
|
if potential_passages_file.exists():
|
||||||
|
passages_file = str(potential_passages_file)
|
||||||
|
print(f"INFO: Automatically found passages file: {passages_file}")
|
||||||
|
|
||||||
|
if not passages_file:
|
||||||
|
raise RuntimeError(
|
||||||
|
f"Recompute mode is enabled, but no passages file was found. "
|
||||||
|
f"A '{self.index_prefix}.passages.json' file should exist in the index directory "
|
||||||
|
f"'{self.index_dir}'. Ensure you build the index with 'recompute=True'."
|
||||||
|
)
|
||||||
|
|
||||||
server_started = self.embedding_server_manager.start_server(
|
server_started = self.embedding_server_manager.start_server(
|
||||||
port=zmq_port,
|
port=self.zmq_port,
|
||||||
model_name=self.embedding_model,
|
model_name=self.embedding_model,
|
||||||
distance_metric=self.distance_metric
|
distance_metric=self.distance_metric,
|
||||||
|
passages_file=passages_file
|
||||||
)
|
)
|
||||||
|
|
||||||
if not server_started:
|
if not server_started:
|
||||||
print(f"WARNING: Failed to start embedding server, falling back to PQ computation")
|
raise RuntimeError(f"Failed to start DiskANN embedding server on port {self.zmq_port}")
|
||||||
recompute_beighbor_embeddings = False
|
|
||||||
|
|
||||||
if query.dtype != np.float32:
|
if query.dtype != np.float32:
|
||||||
query = query.astype(np.float32)
|
query = query.astype(np.float32)
|
||||||
|
|||||||
@@ -0,0 +1,7 @@
|
|||||||
|
# packages/leann-core/src/leann/__init__.py
|
||||||
|
from .api import LeannBuilder, LeannChat, LeannSearcher
|
||||||
|
from .registry import BACKEND_REGISTRY, autodiscover_backends
|
||||||
|
|
||||||
|
autodiscover_backends()
|
||||||
|
|
||||||
|
__all__ = ["LeannBuilder", "LeannSearcher", "LeannChat", "BACKEND_REGISTRY"]
|
||||||
@@ -1,6 +1,9 @@
|
|||||||
# packages/leann-core/src/leann/registry.py
|
# packages/leann-core/src/leann/registry.py
|
||||||
|
|
||||||
from typing import Dict, TYPE_CHECKING
|
from typing import Dict, TYPE_CHECKING
|
||||||
|
import importlib
|
||||||
|
import importlib.metadata
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from leann.interface import LeannBackendFactoryInterface
|
from leann.interface import LeannBackendFactoryInterface
|
||||||
|
|
||||||
@@ -12,4 +15,22 @@ def register_backend(name: str):
|
|||||||
print(f"INFO: Registering backend '{name}'")
|
print(f"INFO: Registering backend '{name}'")
|
||||||
BACKEND_REGISTRY[name] = cls
|
BACKEND_REGISTRY[name] = cls
|
||||||
return cls
|
return cls
|
||||||
return decorator
|
return decorator
|
||||||
|
|
||||||
|
def autodiscover_backends():
|
||||||
|
"""Automatically discovers and imports all 'leann-backend-*' packages."""
|
||||||
|
print("INFO: Starting backend auto-discovery...")
|
||||||
|
discovered_backends = []
|
||||||
|
for dist in importlib.metadata.distributions():
|
||||||
|
dist_name = dist.metadata['name']
|
||||||
|
if dist_name.startswith('leann-backend-'):
|
||||||
|
backend_module_name = dist_name.replace('-', '_')
|
||||||
|
discovered_backends.append(backend_module_name)
|
||||||
|
|
||||||
|
for backend_module_name in sorted(discovered_backends): # sort for deterministic loading
|
||||||
|
try:
|
||||||
|
importlib.import_module(backend_module_name)
|
||||||
|
# Registration message is printed by the decorator
|
||||||
|
except ImportError as e:
|
||||||
|
print(f"WARN: Could not import backend module '{backend_module_name}': {e}")
|
||||||
|
print("INFO: Backend auto-discovery finished.")
|
||||||
Reference in New Issue
Block a user