Merge remote-tracking branch 'origin/main' into feature/claude-code-research

This commit is contained in:
Andy Lee
2025-08-05 23:02:00 -07:00
14 changed files with 3756 additions and 3582 deletions

View File

@@ -312,6 +312,8 @@ class DiskannSearcher(BaseSearcher):
use_global_pruning = True
# Perform search with suppressed C++ output based on log level
use_deferred_fetch = kwargs.get("USE_DEFERRED_FETCH", True)
recompute_neighors = False
with suppress_cpp_output_if_needed():
labels, distances = self._index.batch_search(
query,
@@ -320,9 +322,9 @@ class DiskannSearcher(BaseSearcher):
complexity,
beam_width,
self.num_threads,
kwargs.get("USE_DEFERRED_FETCH", False),
use_deferred_fetch,
kwargs.get("skip_search_reorder", False),
recompute_embeddings,
recompute_neighors,
dedup_node_dis,
prune_ratio,
batch_recompute,

View File

@@ -4,8 +4,8 @@ build-backend = "scikit_build_core.build"
[project]
name = "leann-backend-diskann"
version = "0.2.0"
dependencies = ["leann-core==0.2.0", "numpy", "protobuf>=3.19.0"]
version = "0.2.1"
dependencies = ["leann-core==0.2.1", "numpy", "protobuf>=3.19.0"]
[tool.scikit-build]
# Key: simplified CMake path

View File

@@ -6,10 +6,10 @@ build-backend = "scikit_build_core.build"
[project]
name = "leann-backend-hnsw"
version = "0.2.0"
version = "0.2.1"
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
dependencies = [
"leann-core==0.2.0",
"leann-core==0.2.1",
"numpy",
"pyzmq>=23.0.0",
"msgpack>=1.0.0",

View File

@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "leann-core"
version = "0.2.0"
version = "0.2.1"
description = "Core API and plugin system for LEANN"
readme = "README.md"
requires-python = ">=3.9"

View File

@@ -489,11 +489,35 @@ class OllamaChat(LLMInterface):
import requests
full_url = f"{self.host}/api/generate"
# Handle thinking budget for reasoning models
options = kwargs.copy()
thinking_budget = kwargs.get("thinking_budget")
if thinking_budget:
# Remove thinking_budget from options as it's not a standard Ollama option
options.pop("thinking_budget", None)
# Only apply reasoning parameters to models that support it
reasoning_supported_models = [
"gpt-oss:20b",
"gpt-oss:120b",
"deepseek-r1",
"deepseek-coder",
]
if thinking_budget in ["low", "medium", "high"]:
if any(model in self.model.lower() for model in reasoning_supported_models):
options["reasoning"] = {"effort": thinking_budget, "exclude": False}
logger.info(f"Applied reasoning effort={thinking_budget} to model {self.model}")
else:
logger.warning(
f"Thinking budget '{thinking_budget}' requested but model '{self.model}' may not support reasoning parameters. Proceeding without reasoning."
)
payload = {
"model": self.model,
"prompt": prompt,
"stream": False, # Keep it simple for now
"options": kwargs,
"options": options,
}
logger.debug(f"Sending request to Ollama: {payload}")
try:
@@ -684,11 +708,38 @@ class OpenAIChat(LLMInterface):
params = {
"model": self.model,
"messages": [{"role": "user", "content": prompt}],
"max_tokens": kwargs.get("max_tokens", 1000),
"temperature": kwargs.get("temperature", 0.7),
**{k: v for k, v in kwargs.items() if k not in ["max_tokens", "temperature"]},
}
# Handle max_tokens vs max_completion_tokens based on model
max_tokens = kwargs.get("max_tokens", 1000)
if "o3" in self.model or "o4" in self.model or "o1" in self.model:
# o-series models use max_completion_tokens
params["max_completion_tokens"] = max_tokens
params["temperature"] = 1.0
else:
# Other models use max_tokens
params["max_tokens"] = max_tokens
# Handle thinking budget for reasoning models
thinking_budget = kwargs.get("thinking_budget")
if thinking_budget and thinking_budget in ["low", "medium", "high"]:
# Check if this is an o-series model (partial match for model names)
o_series_models = ["o3", "o3-mini", "o4-mini", "o1", "o3-pro", "o3-deep-research"]
if any(model in self.model for model in o_series_models):
# Use the correct OpenAI reasoning parameter format
params["reasoning_effort"] = thinking_budget
logger.info(f"Applied reasoning_effort={thinking_budget} to model {self.model}")
else:
logger.warning(
f"Thinking budget '{thinking_budget}' requested but model '{self.model}' may not support reasoning parameters. Proceeding without reasoning."
)
# Add other kwargs (excluding thinking_budget as it's handled above)
for k, v in kwargs.items():
if k not in ["max_tokens", "temperature", "thinking_budget"]:
params[k] = v
logger.info(f"Sending request to OpenAI with model {self.model}")
try:

View File

@@ -137,6 +137,13 @@ Examples:
choices=["global", "local", "proportional"],
default="global",
)
ask_parser.add_argument(
"--thinking-budget",
type=str,
choices=["low", "medium", "high"],
default=None,
help="Thinking budget for reasoning models (low/medium/high). Supported by GPT-Oss:20b and other reasoning models.",
)
# List command
subparsers.add_parser("list", help="List all indexes")
@@ -505,6 +512,11 @@ Examples:
if not user_input:
continue
# Prepare LLM kwargs with thinking budget if specified
llm_kwargs = {}
if args.thinking_budget:
llm_kwargs["thinking_budget"] = args.thinking_budget
response = chat.ask(
user_input,
top_k=args.top_k,
@@ -513,11 +525,17 @@ Examples:
prune_ratio=args.prune_ratio,
recompute_embeddings=args.recompute_embeddings,
pruning_strategy=args.pruning_strategy,
llm_kwargs=llm_kwargs,
)
print(f"LEANN: {response}")
else:
query = input("Enter your question: ").strip()
if query:
# Prepare LLM kwargs with thinking budget if specified
llm_kwargs = {}
if args.thinking_budget:
llm_kwargs["thinking_budget"] = args.thinking_budget
response = chat.ask(
query,
top_k=args.top_k,
@@ -526,6 +544,7 @@ Examples:
prune_ratio=args.prune_ratio,
recompute_embeddings=args.recompute_embeddings,
pruning_strategy=args.pruning_strategy,
llm_kwargs=llm_kwargs,
)
print(f"LEANN: {response}")

View File

@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "leann"
version = "0.2.0"
version = "0.2.1"
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
readme = "README.md"
requires-python = ">=3.9"