refactor: move to apps
This commit is contained in:
0
apps/browser/__init__.py
Normal file
0
apps/browser/__init__.py
Normal file
201
apps/browser/__main__.py
Normal file
201
apps/browser/__main__.py
Normal file
@@ -0,0 +1,201 @@
|
||||
import os
|
||||
import asyncio
|
||||
import argparse
|
||||
try:
|
||||
import dotenv
|
||||
dotenv.load_dotenv()
|
||||
except ModuleNotFoundError:
|
||||
# python-dotenv is not installed; skip loading environment variables
|
||||
dotenv = None
|
||||
from pathlib import Path
|
||||
from typing import List, Any
|
||||
from leann.api import LeannBuilder, LeannSearcher, LeannChat
|
||||
from llama_index.core.node_parser import SentenceSplitter
|
||||
|
||||
# Default Chrome profile path
|
||||
DEFAULT_CHROME_PROFILE = os.path.expanduser("~/Library/Application Support/Google/Chrome/Default")
|
||||
|
||||
def create_leann_index_from_multiple_chrome_profiles(profile_dirs: List[Path], index_path: str = "chrome_history_index.leann", max_count: int = -1):
|
||||
"""
|
||||
Create LEANN index from multiple Chrome profile data sources.
|
||||
|
||||
Args:
|
||||
profile_dirs: List of Path objects pointing to Chrome profile directories
|
||||
index_path: Path to save the LEANN index
|
||||
max_count: Maximum number of history entries to process per profile
|
||||
"""
|
||||
print("Creating LEANN index from multiple Chrome profile data sources...")
|
||||
|
||||
# Load documents using ChromeHistoryReader from local readers module
|
||||
from .readers import ChromeHistoryReader
|
||||
reader = ChromeHistoryReader()
|
||||
|
||||
INDEX_DIR = Path(index_path).parent
|
||||
|
||||
if not INDEX_DIR.exists():
|
||||
print(f"--- Index directory not found, building new index ---")
|
||||
all_documents = []
|
||||
total_processed = 0
|
||||
|
||||
# Process each Chrome profile directory
|
||||
for i, profile_dir in enumerate(profile_dirs):
|
||||
print(f"\nProcessing Chrome profile {i+1}/{len(profile_dirs)}: {profile_dir}")
|
||||
|
||||
try:
|
||||
documents = reader.load_data(
|
||||
chrome_profile_path=str(profile_dir),
|
||||
max_count=max_count
|
||||
)
|
||||
if documents:
|
||||
print(f"Loaded {len(documents)} history documents from {profile_dir}")
|
||||
all_documents.extend(documents)
|
||||
total_processed += len(documents)
|
||||
|
||||
# Check if we've reached the max count
|
||||
if max_count > 0 and total_processed >= max_count:
|
||||
print(f"Reached max count of {max_count} documents")
|
||||
break
|
||||
else:
|
||||
print(f"No documents loaded from {profile_dir}")
|
||||
except Exception as e:
|
||||
print(f"Error processing {profile_dir}: {e}")
|
||||
continue
|
||||
|
||||
if not all_documents:
|
||||
print("No documents loaded from any source. Exiting.")
|
||||
return None
|
||||
|
||||
print(f"\nTotal loaded {len(all_documents)} history documents from {len(profile_dirs)} profiles")
|
||||
|
||||
# Create text splitter with 256 chunk size
|
||||
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
|
||||
|
||||
# Convert Documents to text strings and chunk them
|
||||
all_texts = []
|
||||
for doc in all_documents:
|
||||
# Split the document into chunks
|
||||
nodes = text_splitter.get_nodes_from_documents([doc])
|
||||
for node in nodes:
|
||||
all_texts.append(node.get_content())
|
||||
|
||||
print(f"Created {len(all_texts)} text chunks from {len(all_documents)} documents")
|
||||
|
||||
# Create LEANN index directory
|
||||
print(f"--- Index directory not found, building new index ---")
|
||||
INDEX_DIR.mkdir(exist_ok=True)
|
||||
|
||||
print(f"--- Building new LEANN index ---")
|
||||
|
||||
print(f"\n[PHASE 1] Building Leann index...")
|
||||
|
||||
# Use HNSW backend for better macOS compatibility
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="facebook/contriever",
|
||||
graph_degree=32,
|
||||
complexity=64,
|
||||
is_compact=True,
|
||||
is_recompute=True,
|
||||
num_threads=1 # Force single-threaded mode
|
||||
)
|
||||
|
||||
print(f"Adding {len(all_texts)} history chunks to index...")
|
||||
for chunk_text in all_texts:
|
||||
builder.add_text(chunk_text)
|
||||
|
||||
builder.build_index(index_path)
|
||||
print(f"\nLEANN index built at {index_path}!")
|
||||
else:
|
||||
print(f"--- Using existing index at {INDEX_DIR} ---")
|
||||
|
||||
return index_path
|
||||
|
||||
async def query_leann_index(index_path: str, query: str):
|
||||
"""
|
||||
Query the LEANN index.
|
||||
|
||||
Args:
|
||||
index_path: Path to the LEANN index
|
||||
query: The query string
|
||||
"""
|
||||
print(f"\n[PHASE 2] Starting Leann chat session...")
|
||||
chat = LeannChat(index_path=index_path)
|
||||
|
||||
print(f"You: {query}")
|
||||
chat_response = chat.ask(
|
||||
query,
|
||||
top_k=10,
|
||||
recompute_beighbor_embeddings=True,
|
||||
complexity=32,
|
||||
beam_width=1,
|
||||
llm_config={
|
||||
"type": "openai",
|
||||
"model": "gpt-4o",
|
||||
"api_key": os.getenv("OPENAI_API_KEY"),
|
||||
},
|
||||
llm_kwargs={
|
||||
"temperature": 0.0,
|
||||
"max_tokens": 1000
|
||||
}
|
||||
)
|
||||
print(f"Leann: {chat_response}")
|
||||
|
||||
async def main():
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description='LEANN Chrome History Reader - Create and query browser history index')
|
||||
parser.add_argument('--chrome-profile', type=str, default=DEFAULT_CHROME_PROFILE,
|
||||
help=f'Path to Chrome profile directory (default: {DEFAULT_CHROME_PROFILE}), usually you dont need to change this')
|
||||
parser.add_argument('--index-dir', type=str, default="./chrome_history_index_leann_test",
|
||||
help='Directory to store the LEANN index (default: ./chrome_history_index_leann_test)')
|
||||
parser.add_argument('--max-entries', type=int, default=1000,
|
||||
help='Maximum number of history entries to process (default: 1000)')
|
||||
parser.add_argument('--query', type=str, default=None,
|
||||
help='Single query to run (default: runs example queries)')
|
||||
parser.add_argument('--auto-find-profiles', action='store_true', default=True,
|
||||
help='Automatically find all Chrome profiles (default: True)')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
INDEX_DIR = Path(args.index_dir)
|
||||
INDEX_PATH = str(INDEX_DIR / "chrome_history.leann")
|
||||
|
||||
print(f"Using Chrome profile: {args.chrome_profile}")
|
||||
print(f"Index directory: {INDEX_DIR}")
|
||||
print(f"Max entries: {args.max_entries}")
|
||||
|
||||
# Find Chrome profile directories
|
||||
from .readers import ChromeHistoryReader
|
||||
|
||||
if args.auto_find_profiles:
|
||||
profile_dirs = ChromeHistoryReader.find_chrome_profiles()
|
||||
if not profile_dirs:
|
||||
print("No Chrome profiles found automatically. Exiting.")
|
||||
return
|
||||
else:
|
||||
# Use single specified profile
|
||||
profile_path = Path(args.chrome_profile)
|
||||
if not profile_path.exists():
|
||||
print(f"Chrome profile not found: {profile_path}")
|
||||
return
|
||||
profile_dirs = [profile_path]
|
||||
|
||||
# Create or load the LEANN index from all sources
|
||||
index_path = create_leann_index_from_multiple_chrome_profiles(profile_dirs, INDEX_PATH, args.max_entries)
|
||||
|
||||
if index_path:
|
||||
if args.query:
|
||||
# Run single query
|
||||
await query_leann_index(index_path, args.query)
|
||||
else:
|
||||
# Example queries
|
||||
queries = [
|
||||
"What websites did I visit about machine learning?",
|
||||
"Find my search history about programming"
|
||||
]
|
||||
|
||||
for query in queries:
|
||||
print("\n" + "="*60)
|
||||
await query_leann_index(index_path, query)
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
176
apps/browser/readers.py
Normal file
176
apps/browser/readers.py
Normal file
@@ -0,0 +1,176 @@
|
||||
import sqlite3
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import List, Any
|
||||
from llama_index.core import Document
|
||||
from llama_index.core.readers.base import BaseReader
|
||||
|
||||
class ChromeHistoryReader(BaseReader):
|
||||
"""
|
||||
Chrome browser history reader that extracts browsing data from SQLite database.
|
||||
|
||||
Reads Chrome history from the default Chrome profile location and creates documents
|
||||
with embedded metadata similar to the email reader structure.
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
"""Initialize."""
|
||||
pass
|
||||
|
||||
def load_data(self, input_dir: str = None, **load_kwargs: Any) -> List[Document]:
|
||||
"""
|
||||
Load Chrome history data from the default Chrome profile location.
|
||||
|
||||
Args:
|
||||
input_dir: Not used for Chrome history (kept for compatibility)
|
||||
**load_kwargs:
|
||||
max_count (int): Maximum amount of history entries to read.
|
||||
chrome_profile_path (str): Custom path to Chrome profile directory.
|
||||
"""
|
||||
docs: List[Document] = []
|
||||
max_count = load_kwargs.get('max_count', 1000)
|
||||
chrome_profile_path = load_kwargs.get('chrome_profile_path', None)
|
||||
|
||||
# Default Chrome profile path on macOS
|
||||
if chrome_profile_path is None:
|
||||
chrome_profile_path = os.path.expanduser("~/Library/Application Support/Google/Chrome/Default")
|
||||
|
||||
history_db_path = os.path.join(chrome_profile_path, "History")
|
||||
|
||||
if not os.path.exists(history_db_path):
|
||||
print(f"Chrome history database not found at: {history_db_path}")
|
||||
return docs
|
||||
|
||||
try:
|
||||
# Connect to the Chrome history database
|
||||
print(f"Connecting to database: {history_db_path}")
|
||||
conn = sqlite3.connect(history_db_path)
|
||||
cursor = conn.cursor()
|
||||
|
||||
# Query to get browsing history with metadata (removed created_time column)
|
||||
query = """
|
||||
SELECT
|
||||
datetime(last_visit_time/1000000-11644473600,'unixepoch','localtime') as last_visit,
|
||||
url,
|
||||
title,
|
||||
visit_count,
|
||||
typed_count,
|
||||
hidden
|
||||
FROM urls
|
||||
ORDER BY last_visit_time DESC
|
||||
"""
|
||||
|
||||
print(f"Executing query on database: {history_db_path}")
|
||||
cursor.execute(query)
|
||||
rows = cursor.fetchall()
|
||||
print(f"Query returned {len(rows)} rows")
|
||||
|
||||
count = 0
|
||||
for row in rows:
|
||||
if count >= max_count and max_count > 0:
|
||||
break
|
||||
|
||||
last_visit, url, title, visit_count, typed_count, hidden = row
|
||||
|
||||
# Create document content with metadata embedded in text
|
||||
doc_content = f"""
|
||||
[BROWSING HISTORY METADATA]
|
||||
URL: {url}
|
||||
Title: {title}
|
||||
Last Visit: {last_visit}
|
||||
Visit Count: {visit_count}
|
||||
Typed Count: {typed_count}
|
||||
Hidden: {hidden}
|
||||
[END METADATA]
|
||||
|
||||
Title: {title}
|
||||
URL: {url}
|
||||
Last visited: {last_visit}
|
||||
"""
|
||||
|
||||
# Create document with embedded metadata
|
||||
doc = Document(text=doc_content, metadata={})
|
||||
docs.append(doc)
|
||||
count += 1
|
||||
|
||||
conn.close()
|
||||
print(f"Loaded {len(docs)} Chrome history documents")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error reading Chrome history: {e}")
|
||||
return docs
|
||||
|
||||
return docs
|
||||
|
||||
@staticmethod
|
||||
def find_chrome_profiles() -> List[Path]:
|
||||
"""
|
||||
Find all Chrome profile directories.
|
||||
|
||||
Returns:
|
||||
List of Path objects pointing to Chrome profile directories
|
||||
"""
|
||||
chrome_base_path = Path(os.path.expanduser("~/Library/Application Support/Google/Chrome"))
|
||||
profile_dirs = []
|
||||
|
||||
if not chrome_base_path.exists():
|
||||
print(f"Chrome directory not found at: {chrome_base_path}")
|
||||
return profile_dirs
|
||||
|
||||
# Find all profile directories
|
||||
for profile_dir in chrome_base_path.iterdir():
|
||||
if profile_dir.is_dir() and profile_dir.name != "System Profile":
|
||||
history_path = profile_dir / "History"
|
||||
if history_path.exists():
|
||||
profile_dirs.append(profile_dir)
|
||||
print(f"Found Chrome profile: {profile_dir}")
|
||||
|
||||
print(f"Found {len(profile_dirs)} Chrome profiles")
|
||||
return profile_dirs
|
||||
|
||||
@staticmethod
|
||||
def export_history_to_file(output_file: str = "chrome_history_export.txt", max_count: int = 1000):
|
||||
"""
|
||||
Export Chrome history to a text file using the same SQL query format.
|
||||
|
||||
Args:
|
||||
output_file: Path to the output file
|
||||
max_count: Maximum number of entries to export
|
||||
"""
|
||||
chrome_profile_path = os.path.expanduser("~/Library/Application Support/Google/Chrome/Default")
|
||||
history_db_path = os.path.join(chrome_profile_path, "History")
|
||||
|
||||
if not os.path.exists(history_db_path):
|
||||
print(f"Chrome history database not found at: {history_db_path}")
|
||||
return
|
||||
|
||||
try:
|
||||
conn = sqlite3.connect(history_db_path)
|
||||
cursor = conn.cursor()
|
||||
|
||||
query = """
|
||||
SELECT
|
||||
datetime(last_visit_time/1000000-11644473600,'unixepoch','localtime') as last_visit,
|
||||
url,
|
||||
title,
|
||||
visit_count,
|
||||
typed_count,
|
||||
hidden
|
||||
FROM urls
|
||||
ORDER BY last_visit_time DESC
|
||||
LIMIT ?
|
||||
"""
|
||||
|
||||
cursor.execute(query, (max_count,))
|
||||
rows = cursor.fetchall()
|
||||
|
||||
with open(output_file, 'w', encoding='utf-8') as f:
|
||||
for row in rows:
|
||||
last_visit, url, title, visit_count, typed_count, hidden = row
|
||||
f.write(f"{last_visit}\t{url}\t{title}\t{visit_count}\t{typed_count}\t{hidden}\n")
|
||||
|
||||
conn.close()
|
||||
print(f"Exported {len(rows)} history entries to {output_file}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error exporting Chrome history: {e}")
|
||||
Reference in New Issue
Block a user