docs: Make example commands more representative
- Add default values to parameter descriptions - Replace generic examples with real-world use cases - Focus on data-source-specific features in examples - Remove redundant demonstrations of common parameters
This commit is contained in:
82
README.md
82
README.md
@@ -203,25 +203,19 @@ python ./examples/document_rag.py --query "What are the main techniques LEANN ex
|
||||
|
||||
#### Document-Specific Parameters
|
||||
```bash
|
||||
--data-dir DIR # Directory containing documents to process
|
||||
--file-types .ext .ext # File extensions to process (e.g., .pdf .txt .md)
|
||||
--data-dir DIR # Directory containing documents to process (default: examples/data)
|
||||
--file-types .ext .ext # File extensions to process (default: .pdf .txt .md)
|
||||
--chunk-size N # Size of text chunks (default: 2048)
|
||||
--chunk-overlap N # Overlap between chunks (default: 25)
|
||||
```
|
||||
|
||||
#### Example Commands
|
||||
```bash
|
||||
# Process custom documents
|
||||
python examples/document_rag.py --data-dir "./my_documents" --file-types .pdf .txt .md
|
||||
# Process your research papers folder
|
||||
python examples/document_rag.py --data-dir "~/Documents/Papers" --file-types .pdf
|
||||
|
||||
# Process with custom chunking
|
||||
python examples/document_rag.py --chunk-size 512 --chunk-overlap 256
|
||||
|
||||
# Use local LLM for privacy
|
||||
python examples/document_rag.py --llm ollama --llm-model llama3.2:1b
|
||||
|
||||
# Use OpenAI embeddings
|
||||
python examples/document_rag.py --embedding-model text-embedding-3-small --embedding-mode openai
|
||||
# Process code documentation with smaller chunks
|
||||
python examples/document_rag.py --data-dir "./docs" --chunk-size 512 --file-types .md .rst
|
||||
```
|
||||
|
||||
</details>
|
||||
@@ -248,28 +242,16 @@ python examples/email_rag.py --query "What's the food I ordered by DoorDash or U
|
||||
#### Email-Specific Parameters
|
||||
```bash
|
||||
--mail-path PATH # Path to specific mail directory (auto-detects if omitted)
|
||||
--include-html # Include HTML content in processing
|
||||
--include-html # Include HTML content in processing (useful for newsletters)
|
||||
```
|
||||
|
||||
#### Example Commands
|
||||
```bash
|
||||
# Auto-detect and process all Apple Mail accounts
|
||||
python examples/email_rag.py
|
||||
# Search work emails from a specific account
|
||||
python examples/email_rag.py --mail-path "~/Library/Mail/V10/WORK_ACCOUNT"
|
||||
|
||||
# Process specific mail directory
|
||||
python examples/email_rag.py --mail-path "~/Library/Mail/V10/..."
|
||||
|
||||
# Process all emails (may take time)
|
||||
python examples/email_rag.py --max-items -1
|
||||
|
||||
# Include HTML content
|
||||
python examples/email_rag.py --include-html
|
||||
|
||||
# Use OpenAI embeddings for better results
|
||||
python examples/email_rag.py --embedding-model text-embedding-3-small --embedding-mode openai
|
||||
|
||||
# Use local LLM for privacy
|
||||
python examples/email_rag.py --llm ollama --llm-model llama3.2:1b
|
||||
# Find all receipts and order confirmations (includes HTML)
|
||||
python examples/email_rag.py --query "receipt order confirmation invoice" --include-html
|
||||
```
|
||||
|
||||
</details>
|
||||
@@ -304,23 +286,11 @@ python examples/browser_rag.py --query "Tell me my browser history about machine
|
||||
|
||||
#### Example Commands
|
||||
```bash
|
||||
# Auto-detect and process all Chrome profiles
|
||||
python examples/browser_rag.py
|
||||
# Search work-related browsing in your work profile
|
||||
python examples/browser_rag.py --chrome-profile "~/Library/Application Support/Google/Chrome/Profile 1"
|
||||
|
||||
# Process specific Chrome profile
|
||||
python examples/browser_rag.py --chrome-profile "~/Library/Application Support/Google/Chrome/Default"
|
||||
|
||||
# Limit history entries for testing
|
||||
python examples/browser_rag.py --max-items 500
|
||||
|
||||
# Interactive search mode
|
||||
python examples/browser_rag.py # Without --query for interactive mode
|
||||
|
||||
# Use local LLM for privacy
|
||||
python examples/browser_rag.py --llm ollama --llm-model llama3.2:1b
|
||||
|
||||
# Use better embeddings
|
||||
python examples/browser_rag.py --embedding-model text-embedding-3-small --embedding-mode openai
|
||||
# Interactive mode to explore your research history
|
||||
python examples/browser_rag.py --query "machine learning papers arxiv"
|
||||
```
|
||||
|
||||
</details>
|
||||
@@ -388,29 +358,17 @@ Failed to find or export WeChat data. Exiting.
|
||||
|
||||
#### WeChat-Specific Parameters
|
||||
```bash
|
||||
--export-dir DIR # Directory to store exported WeChat data
|
||||
--export-dir DIR # Directory to store exported WeChat data (default: wechat_export_direct)
|
||||
--force-export # Force re-export even if data exists
|
||||
```
|
||||
|
||||
#### Example Commands
|
||||
```bash
|
||||
# Auto-export and index WeChat data
|
||||
python examples/wechat_rag.py
|
||||
# Search for travel plans discussed in group chats
|
||||
python examples/wechat_rag.py --query "旅游 travel 机票 酒店" --max-items 10000
|
||||
|
||||
# Use custom export directory
|
||||
python examples/wechat_rag.py --export-dir "./my_wechat_exports"
|
||||
|
||||
# Force re-export even if data exists
|
||||
python examples/wechat_rag.py --force-export
|
||||
|
||||
# Limit chat entries for testing
|
||||
python examples/wechat_rag.py --max-items 1000
|
||||
|
||||
# Use HuggingFace model for Chinese support
|
||||
python examples/wechat_rag.py --llm hf --llm-model Qwen/Qwen2.5-1.5B-Instruct
|
||||
|
||||
# Use Qwen embedding model (better for Chinese)
|
||||
python examples/wechat_rag.py --embedding-model Qwen/Qwen3-Embedding-0.6B
|
||||
# Re-export and search recent chats (useful after new messages)
|
||||
python examples/wechat_rag.py --force-export --query "最近的工作安排"
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
Reference in New Issue
Block a user