diff --git a/README.md b/README.md
index 2cfb405..4ababc6 100755
--- a/README.md
+++ b/README.md
@@ -16,7 +16,7 @@ LEANN is a revolutionary vector database that democratizes personal AI. Transfor
LEANN achieves this through *graph-based selective recomputation* with *high-degree preserving pruning*, computing embeddings on-demand instead of storing them all. [Illustration →](#️-architecture--how-it-works) | [Paper →](https://arxiv.org/abs/2506.08276)
-**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can search your **[file system](#process-any-documents-pdf-txt-md)**, **[emails](#search-your-entire-life)**, **[browser history](#time-machine-for-the-web)**, **[chat history](#wechat-detective)**, or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
+**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can search your **[file system](#📄-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#📧-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#🕵️-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#💬-wechat-detective-unlock-your-golden-memories)**, or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
@@ -129,7 +129,7 @@ response = chat.ask(
LEANN supports RAG on various data sources including documents (.pdf, .txt, .md), Apple Mail, Google Search History, WeChat, and more.
-### Process Any Documents (.pdf, .txt, .md)
+### 📄 Personal Data Manager: Process Any Documents (.pdf, .txt, .md)!
Ask questions directly about your personal PDFs, documents, and any directory containing your files!
@@ -148,13 +148,13 @@ python ./examples/main_cli_example.py
-### Search Your Entire Life
+### 📧 Your Personal Email Secretary: RAG on Apple Mail!
**Note:** You need to grant full disk access to your terminal/VS Code in System Preferences → Privacy & Security → Full Disk Access.
```bash
python examples/mail_reader_leann.py --query "What's the food I ordered by doordash or Uber eat?"
```
-**90K emails → 14MB.** Finally, search your email like you search Google.
+**780K email chunks → 78MB storage** Finally, search your email like you search Google.
📋 Click to expand: Command Examples
@@ -187,11 +187,11 @@ Once the index is built, you can ask questions like:
- "Show me emails about travel expenses"
-### Time Machine for the Web
+### 🕵️ Time Machine for the Web: RAG Your Entire Browser History!
```bash
python examples/google_history_reader_leann.py --query "Tell me my browser history about machine learning?"
```
-**38K browser entries → 6MB.** Your browser history becomes your personal search engine.
+**38K browser entries → 6MB storage.** Your browser history becomes your personal search engine.
📋 Click to expand: Command Examples
@@ -240,12 +240,12 @@ Once the index is built, you can ask questions like:
-### WeChat Detective
+### 💬 WeChat Detective: Unlock Your Golden Memories!
```bash
python examples/wechat_history_reader_leann.py --query "Show me all group chats about weekend plans"
```
-**400K messages → 64MB.** Search years of chat history in any language.
+**400K messages → 64MB storage** Search years of chat history in any language.
@@ -400,11 +400,11 @@ Same dataset, same hardware, same embedding model. LEANN just works better.
### Storage Usage Comparison
-| System | DPR (2.1M chunks) | RPJ-wiki (60M chunks) | Chat history (400K messages) | Apple emails (90K messages chunks) |Google Search History (38K entries)
+| System | DPR (2.1M chunks) | RPJ-wiki (60M chunks) | Chat history (400K messages) | Apple emails (780K messages chunks) |Google Search History (38K entries)
|-----------------------|------------------|------------------------|-----------------------------|------------------------------|------------------------------|
-| Traditional Vector DB(FAISS) | 3.8 GB | 201 GB | 1.8G | 305.8 MB |130.4 MB |
-| **LEANN** | **324 MB** | **6 GB** | **64 MB** | **14.8 MB** |**6.4MB** |
-| **Reduction** | **91% smaller** | **97% smaller** | **97% smaller** | **95% smaller** |**95% smaller** |
+| Traditional Vector DB(FAISS) | 3.8 GB | 201 GB | 1.8G | 2.4G |130.4 MB |
+| **LEANN** | **324 MB** | **6 GB** | **64 MB** | **79 MB** |**6.4MB** |
+| **Reduction** | **91% smaller** | **97% smaller** | **97% smaller** | **97% smaller** |**95% smaller** |