update readme and 30 seconds example

This commit is contained in:
yichuan520030910320
2025-07-15 23:18:01 -07:00
parent 4a2cb914d7
commit c1bc2603a2
2 changed files with 198 additions and 304 deletions

View File

@@ -68,27 +68,24 @@ uv sync
```python
from leann.api import LeannBuilder, LeannSearcher
# 1. Build index (no embeddings stored!)
builder = LeannBuilder(backend_name="hnsw")
builder.add_text("C# is a powerful programming language")
builder.add_text("Python is a powerful programming language")
builder.add_text("Machine learning transforms industries")
builder.add_text("Neural networks process complex data")
builder.add_text("Leann is a great storage saving engine for RAG on your macbook")
builder.build_index("knowledge.leann")
# 2. Search with real-time embeddings
searcher = LeannSearcher("knowledge.leann")
results = searcher.search("programming languages", top_k=2)
for result in results:
print(f"Score: {result['score']:.3f} - {result['text']}")
results = searcher.search("C++ programming languages", top_k=2, recompute_beighbor_embeddings=True)
print(results)
```
### Run the Demo
### Run the Demo (support .pdf,.txt,.docx, .pptx, .csv, .md etc)
```bash
uv run examples/document_search.py
uv run ./examples/main_cli_example.py
```
or you want to use python
@@ -99,7 +96,7 @@ python ./examples/main_cli_example.py
```
**PDF RAG Demo (using LlamaIndex for document parsing and Leann for indexing/search)**
This demo showcases how to build a RAG system for PDF documents using Leann.
This demo showcases how to build a RAG system for PDF/md documents using Leann.
1. Place your PDF files (and other supported formats like .docx, .pptx, .xlsx) into the `examples/data/` directory.
2. Ensure you have an `OPENAI_API_KEY` set in your environment variables or in a `.env` file for the LLM to function.