fix: logs

This commit is contained in:
Andy Lee
2025-07-21 23:02:13 -07:00
parent 573313f0b6
commit c2f35c8e73
2 changed files with 33 additions and 25 deletions

View File

@@ -17,12 +17,20 @@ import logging
# Set up logging based on environment variable # Set up logging based on environment variable
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper() LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
logging.basicConfig(
level=getattr(logging, LOG_LEVEL, logging.INFO),
format="%(asctime)s - %(levelname)s - %(message)s",
)
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
# Force set logger level (don't rely on basicConfig in subprocess)
log_level = getattr(logging, LOG_LEVEL, logging.WARNING)
logger.setLevel(log_level)
# Ensure we have a handler if none exists
if not logger.handlers:
handler = logging.StreamHandler()
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.propagate = False
def create_hnsw_embedding_server( def create_hnsw_embedding_server(
passages_file: Optional[str] = None, passages_file: Optional[str] = None,

View File

@@ -55,8 +55,8 @@ def compute_embeddings_sentence_transformers(
""" """
Compute embeddings using SentenceTransformer with model caching Compute embeddings using SentenceTransformer with model caching
""" """
print( logger.info(
f"INFO: Computing embeddings for {len(texts)} texts using SentenceTransformer, model: '{model_name}'" f"Computing embeddings for {len(texts)} texts using SentenceTransformer, model: '{model_name}'"
) )
# Auto-detect device # Auto-detect device
@@ -73,13 +73,13 @@ def compute_embeddings_sentence_transformers(
# Check if model is already cached # Check if model is already cached
if cache_key in _model_cache: if cache_key in _model_cache:
print(f"INFO: Using cached model: {model_name}") logger.info(f"Using cached model: {model_name}")
model = _model_cache[cache_key] model = _model_cache[cache_key]
else: else:
print(f"INFO: Loading and caching SentenceTransformer model: {model_name}") logger.info(f"Loading and caching SentenceTransformer model: {model_name}")
from sentence_transformers import SentenceTransformer from sentence_transformers import SentenceTransformer
print(f"INFO: Using device: {device}") logger.info(f"Using device: {device}")
# Prepare model and tokenizer optimization parameters # Prepare model and tokenizer optimization parameters
model_kwargs = { model_kwargs = {
@@ -104,9 +104,9 @@ def compute_embeddings_sentence_transformers(
tokenizer_kwargs=tokenizer_kwargs, tokenizer_kwargs=tokenizer_kwargs,
local_files_only=True, local_files_only=True,
) )
print("Model loaded successfully! (local + optimized)") logger.info("Model loaded successfully! (local + optimized)")
except Exception as e: except Exception as e:
print(f"Local loading failed ({e}), trying network download...") logger.warning(f"Local loading failed ({e}), trying network download...")
# Fallback to network loading # Fallback to network loading
model_kwargs["local_files_only"] = False model_kwargs["local_files_only"] = False
tokenizer_kwargs["local_files_only"] = False tokenizer_kwargs["local_files_only"] = False
@@ -118,23 +118,23 @@ def compute_embeddings_sentence_transformers(
tokenizer_kwargs=tokenizer_kwargs, tokenizer_kwargs=tokenizer_kwargs,
local_files_only=False, local_files_only=False,
) )
print("Model loaded successfully! (network + optimized)") logger.info("Model loaded successfully! (network + optimized)")
# Apply additional optimizations (if supported) # Apply additional optimizations (if supported)
if use_fp16 and device in ["cuda", "mps"]: if use_fp16 and device in ["cuda", "mps"]:
try: try:
model = model.half() model = model.half()
model = torch.compile(model) model = torch.compile(model)
print(f"Using FP16 precision and compile optimization: {model_name}") logger.info(f"Using FP16 precision and compile optimization: {model_name}")
except Exception as e: except Exception as e:
print(f"FP16 or compile optimization failed: {e}") logger.warning(f"FP16 or compile optimization failed: {e}")
# Cache the model # Cache the model
_model_cache[cache_key] = model _model_cache[cache_key] = model
print(f"Model cached: {cache_key}") logger.info(f"Model cached: {cache_key}")
# Compute embeddings # Compute embeddings
print("INFO: Starting embedding computation...") logger.info("Starting embedding computation...")
embeddings = model.encode( embeddings = model.encode(
texts, texts,
@@ -178,10 +178,10 @@ def compute_embeddings_openai(texts: List[str], model_name: str) -> np.ndarray:
else: else:
client = openai.OpenAI(api_key=api_key) client = openai.OpenAI(api_key=api_key)
_model_cache[cache_key] = client _model_cache[cache_key] = client
print("OpenAI client cached") logger.info("OpenAI client cached")
print( logger.info(
f"INFO: Computing embeddings for {len(texts)} texts using OpenAI API, model: '{model_name}'" f"Computing embeddings for {len(texts)} texts using OpenAI API, model: '{model_name}'"
) )
# OpenAI has limits on batch size and input length # OpenAI has limits on batch size and input length
@@ -208,7 +208,7 @@ def compute_embeddings_openai(texts: List[str], model_name: str) -> np.ndarray:
batch_embeddings = [embedding.embedding for embedding in response.data] batch_embeddings = [embedding.embedding for embedding in response.data]
all_embeddings.extend(batch_embeddings) all_embeddings.extend(batch_embeddings)
except Exception as e: except Exception as e:
print(f"ERROR: Batch {i} failed: {e}") logger.error(f"Batch {i} failed: {e}")
raise raise
embeddings = np.array(all_embeddings, dtype=np.float32) embeddings = np.array(all_embeddings, dtype=np.float32)
@@ -231,20 +231,20 @@ def compute_embeddings_mlx(
"MLX or related libraries not available. Install with: uv pip install mlx mlx-lm" "MLX or related libraries not available. Install with: uv pip install mlx mlx-lm"
) from e ) from e
print( logger.info(
f"INFO: Computing embeddings for {len(chunks)} chunks using MLX model '{model_name}' with batch_size={batch_size}..." f"Computing embeddings for {len(chunks)} chunks using MLX model '{model_name}' with batch_size={batch_size}..."
) )
# Cache MLX model and tokenizer # Cache MLX model and tokenizer
cache_key = f"mlx_{model_name}" cache_key = f"mlx_{model_name}"
if cache_key in _model_cache: if cache_key in _model_cache:
print(f"INFO: Using cached MLX model: {model_name}") logger.info(f"Using cached MLX model: {model_name}")
model, tokenizer = _model_cache[cache_key] model, tokenizer = _model_cache[cache_key]
else: else:
print(f"INFO: Loading and caching MLX model: {model_name}") logger.info(f"Loading and caching MLX model: {model_name}")
model, tokenizer = load(model_name) model, tokenizer = load(model_name)
_model_cache[cache_key] = (model, tokenizer) _model_cache[cache_key] = (model, tokenizer)
print(f"MLX model cached: {cache_key}") logger.info(f"MLX model cached: {cache_key}")
# Process chunks in batches with progress bar # Process chunks in batches with progress bar
all_embeddings = [] all_embeddings = []