Faster Update (#148)
* stash * stash * add std err in add and trace progress * fix. * docs * style: format * docs * better figs * better figs * update results * fotmat --------- Co-authored-by: yichuan-w <yichuan-w@users.noreply.github.com>
This commit is contained in:
143
benchmarks/update/README.md
Normal file
143
benchmarks/update/README.md
Normal file
@@ -0,0 +1,143 @@
|
||||
# Update Benchmarks
|
||||
|
||||
This directory hosts two benchmark suites that exercise LEANN’s HNSW “update +
|
||||
search” pipeline under different assumptions:
|
||||
|
||||
1. **RNG recompute latency** – measure how random-neighbour pruning and cache
|
||||
settings influence incremental `add()` latency when embeddings are fetched
|
||||
over the ZMQ embedding server.
|
||||
2. **Update strategy comparison** – compare a fully sequential update pipeline
|
||||
against an offline approach that keeps the graph static and fuses results.
|
||||
|
||||
Both suites build a non-compact, `is_recompute=True` index so that new
|
||||
embeddings are pulled from the embedding server. Benchmark outputs are written
|
||||
under `.leann/bench/` by default and appended to CSV files for later plotting.
|
||||
|
||||
## Benchmarks
|
||||
|
||||
### 1. HNSW RNG Recompute Benchmark
|
||||
|
||||
`bench_hnsw_rng_recompute.py` evaluates incremental update latency under four
|
||||
random-neighbour (RNG) configurations. Each scenario uses the same dataset but
|
||||
changes the forward / reverse RNG pruning flags and whether the embedding cache
|
||||
is enabled:
|
||||
|
||||
| Scenario name | Forward RNG | Reverse RNG | ZMQ embedding cache |
|
||||
| ---------------------------------- | ----------- | ----------- | ------------------- |
|
||||
| `baseline` | Enabled | Enabled | Enabled |
|
||||
| `no_cache_baseline` | Enabled | Enabled | **Disabled** |
|
||||
| `disable_forward_rng` | **Disabled**| Enabled | Enabled |
|
||||
| `disable_forward_and_reverse_rng` | **Disabled**| **Disabled**| Enabled |
|
||||
|
||||
For each scenario the script:
|
||||
1. (Re)builds a `is_recompute=True` index and writes it to `.leann/bench/`.
|
||||
2. Starts `leann_backend_hnsw.hnsw_embedding_server` for remote embeddings.
|
||||
3. Appends the requested updates using the scenario’s RNG flags.
|
||||
4. Records total time, latency per passage, ZMQ fetch counts, and stage-level
|
||||
timings before appending a row to the CSV output.
|
||||
|
||||
**Run:**
|
||||
```bash
|
||||
LEANN_HNSW_LOG_PATH=.leann/bench/hnsw_server.log \
|
||||
LEANN_LOG_LEVEL=INFO \
|
||||
uv run -m benchmarks.update.bench_hnsw_rng_recompute \
|
||||
--runs 1 \
|
||||
--index-path .leann/bench/test.leann \
|
||||
--initial-files data/PrideandPrejudice.txt \
|
||||
--update-files data/huawei_pangu.md \
|
||||
--max-initial 300 \
|
||||
--max-updates 1 \
|
||||
--add-timeout 120
|
||||
```
|
||||
|
||||
**Output:**
|
||||
- `benchmarks/update/bench_results.csv` – per-scenario timing statistics
|
||||
(including ms/passage) for each run.
|
||||
- `.leann/bench/hnsw_server.log` – detailed ZMQ/server logs (path controlled by
|
||||
`LEANN_HNSW_LOG_PATH`).
|
||||
_The reference CSVs checked into this branch were generated on a workstation with an NVIDIA RTX 4090 GPU; throughput numbers will differ on other hardware._
|
||||
|
||||
### 2. Sequential vs. Offline Update Benchmark
|
||||
|
||||
`bench_update_vs_offline_search.py` compares two end-to-end strategies on the
|
||||
same dataset:
|
||||
|
||||
- **Scenario A – Sequential Update**
|
||||
- Start an embedding server.
|
||||
- Sequentially call `index.add()`; each call fetches embeddings via ZMQ and
|
||||
mutates the HNSW graph.
|
||||
- After all inserts, run a search on the updated graph.
|
||||
- Metrics recorded: update time (`add_total_s`), post-update search time
|
||||
(`search_time_s`), combined total (`total_time_s`), and per-passage
|
||||
latency.
|
||||
|
||||
- **Scenario B – Offline Embedding + Concurrent Search**
|
||||
- Stop Scenario A’s server and start a fresh embedding server.
|
||||
- Spawn two threads: one generates embeddings for the new passages offline
|
||||
(graph unchanged); the other computes the query embedding and searches the
|
||||
existing graph.
|
||||
- Merge offline similarities with the graph search results to emulate late
|
||||
fusion, then report the merged top‑k preview.
|
||||
- Metrics recorded: embedding time (`emb_time_s`), search time
|
||||
(`search_time_s`), concurrent makespan (`makespan_s`), and scenario total.
|
||||
|
||||
**Run (both scenarios):**
|
||||
```bash
|
||||
uv run -m benchmarks.update.bench_update_vs_offline_search \
|
||||
--index-path .leann/bench/offline_vs_update.leann \
|
||||
--max-initial 300 \
|
||||
--num-updates 1
|
||||
```
|
||||
|
||||
You can pass `--only A` or `--only B` to run a single scenario. The script will
|
||||
print timing summaries to stdout and append the results to CSV.
|
||||
|
||||
**Output:**
|
||||
- `benchmarks/update/offline_vs_update.csv` – per-scenario timing statistics for
|
||||
Scenario A and B.
|
||||
- Console output includes Scenario B’s merged top‑k preview for quick sanity
|
||||
checks.
|
||||
_The sample results committed here come from runs on an RTX 4090-equipped machine; expect variations if you benchmark on different GPUs._
|
||||
|
||||
### 3. Visualisation
|
||||
|
||||
`plot_bench_results.py` combines the RNG benchmark and the update strategy
|
||||
benchmark into a single two-panel plot.
|
||||
|
||||
**Run:**
|
||||
```bash
|
||||
uv run -m benchmarks.update.plot_bench_results \
|
||||
--csv benchmarks/update/bench_results.csv \
|
||||
--csv-right benchmarks/update/offline_vs_update.csv \
|
||||
--out benchmarks/update/bench_latency_from_csv.png
|
||||
```
|
||||
|
||||
**Options:**
|
||||
- `--broken-y` – Enable a broken Y-axis (default: true when appropriate).
|
||||
- `--csv` – RNG benchmark results CSV (left panel).
|
||||
- `--csv-right` – Update strategy results CSV (right panel).
|
||||
- `--out` – Output image path (PNG/PDF supported).
|
||||
|
||||
**Output:**
|
||||
- `benchmarks/update/bench_latency_from_csv.png` – visual comparison of the two
|
||||
suites.
|
||||
- `benchmarks/update/bench_latency_from_csv.pdf` – PDF version, suitable for
|
||||
slides/papers.
|
||||
|
||||
## Parameters & Environment
|
||||
|
||||
### Common CLI Flags
|
||||
- `--max-initial` – Number of initial passages used to seed the index.
|
||||
- `--max-updates` / `--num-updates` – Number of passages to treat as updates.
|
||||
- `--index-path` – Base path (without extension) where the LEANN index is stored.
|
||||
- `--runs` – Number of repetitions (RNG benchmark only).
|
||||
|
||||
### Environment Variables
|
||||
- `LEANN_HNSW_LOG_PATH` – File to receive embedding-server logs (optional).
|
||||
- `LEANN_LOG_LEVEL` – Logging verbosity (DEBUG/INFO/WARNING/ERROR).
|
||||
- `CUDA_VISIBLE_DEVICES` – Set to empty string if you want to force CPU
|
||||
execution of the embedding model.
|
||||
|
||||
With these scripts you can easily replicate LEANN’s update benchmarks, compare
|
||||
multiple RNG strategies, and evaluate whether sequential updates or offline
|
||||
fusion better match your latency/accuracy trade-offs.
|
||||
Reference in New Issue
Block a user