benchmarks: unify HNSW & DiskANN into one clean script; isolate groups, fixed ports, warm-up, param complexity
This commit is contained in:
@@ -1,162 +1,172 @@
|
|||||||
|
import argparse
|
||||||
import os
|
import os
|
||||||
|
import socket
|
||||||
import time
|
import time
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
from leann import LeannBuilder, LeannSearcher
|
from leann import LeannBuilder, LeannSearcher
|
||||||
|
|
||||||
|
|
||||||
def ensure_index(
|
def _free_port() -> int:
|
||||||
index_path: str, num_docs: int = 5000, is_recompute: bool = True, is_compact: bool = True
|
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock:
|
||||||
):
|
sock.bind(("127.0.0.1", 0))
|
||||||
path = Path(index_path)
|
return sock.getsockname()[1]
|
||||||
if (path.parent / f"{path.stem}.meta.json").exists():
|
|
||||||
return
|
|
||||||
|
|
||||||
|
|
||||||
|
def _meta_exists(index_path: str) -> bool:
|
||||||
|
p = Path(index_path)
|
||||||
|
return (p.parent / f"{p.stem}.meta.json").exists()
|
||||||
|
|
||||||
|
|
||||||
|
def ensure_index_hnsw(index_path: str, num_docs: int, is_recompute: bool) -> None:
|
||||||
|
if _meta_exists(index_path):
|
||||||
|
return
|
||||||
builder = LeannBuilder(
|
builder = LeannBuilder(
|
||||||
backend_name="hnsw",
|
backend_name="hnsw",
|
||||||
embedding_model=os.getenv("LEANN_EMBED_MODEL", "facebook/contriever"),
|
embedding_model=os.getenv("LEANN_EMBED_MODEL", "facebook/contriever"),
|
||||||
embedding_mode=os.getenv("LEANN_EMBED_MODE", "sentence-transformers"),
|
embedding_mode=os.getenv("LEANN_EMBED_MODE", "sentence-transformers"),
|
||||||
graph_degree=32,
|
graph_degree=32,
|
||||||
complexity=64,
|
complexity=64,
|
||||||
is_compact=is_compact,
|
is_compact=is_recompute, # HNSW: compact only when recompute
|
||||||
is_recompute=is_recompute,
|
is_recompute=is_recompute,
|
||||||
num_threads=4,
|
num_threads=4,
|
||||||
)
|
)
|
||||||
|
|
||||||
for i in range(num_docs):
|
for i in range(num_docs):
|
||||||
builder.add_text(
|
builder.add_text(
|
||||||
f"This is a test document number {i}. It contains some repeated text for benchmarking."
|
f"This is a test document number {i}. It contains some repeated text for benchmarking."
|
||||||
)
|
)
|
||||||
|
|
||||||
builder.build_index(index_path)
|
builder.build_index(index_path)
|
||||||
|
|
||||||
|
|
||||||
def bench_once(index_path: str, recompute: bool, top_k: int = 10) -> float:
|
def ensure_index_diskann(index_path: str, num_docs: int, is_recompute: bool) -> None:
|
||||||
searcher = LeannSearcher(index_path=index_path)
|
if _meta_exists(index_path):
|
||||||
t0 = time.time()
|
return
|
||||||
_ = searcher.search(
|
builder = LeannBuilder(
|
||||||
"test document number 42",
|
backend_name="diskann",
|
||||||
top_k=top_k,
|
embedding_model=os.getenv("LEANN_EMBED_MODEL", "facebook/contriever"),
|
||||||
|
embedding_mode=os.getenv("LEANN_EMBED_MODE", "sentence-transformers"),
|
||||||
|
graph_degree=32,
|
||||||
complexity=64,
|
complexity=64,
|
||||||
prune_ratio=0.0,
|
is_recompute=is_recompute,
|
||||||
recompute_embeddings=recompute,
|
num_threads=4,
|
||||||
)
|
)
|
||||||
return time.time() - t0
|
for i in range(num_docs):
|
||||||
|
label = "R" if is_recompute else "NR"
|
||||||
|
builder.add_text(f"DiskANN {label} test doc {i} for quick benchmark.")
|
||||||
|
builder.build_index(index_path)
|
||||||
|
|
||||||
|
|
||||||
|
def _bench_group(
|
||||||
|
index_path: str,
|
||||||
|
recompute: bool,
|
||||||
|
query: str,
|
||||||
|
repeats: int,
|
||||||
|
complexity: int = 32,
|
||||||
|
top_k: int = 10,
|
||||||
|
) -> float:
|
||||||
|
# Independent searcher per group; fixed port when recompute
|
||||||
|
searcher = LeannSearcher(index_path=index_path)
|
||||||
|
port = _free_port() if recompute else 0
|
||||||
|
|
||||||
|
# Warm-up once
|
||||||
|
_ = searcher.search(
|
||||||
|
query,
|
||||||
|
top_k=top_k,
|
||||||
|
complexity=complexity,
|
||||||
|
recompute_embeddings=recompute,
|
||||||
|
expected_zmq_port=port,
|
||||||
|
)
|
||||||
|
|
||||||
|
def _once() -> float:
|
||||||
|
t0 = time.time()
|
||||||
|
_ = searcher.search(
|
||||||
|
query,
|
||||||
|
top_k=top_k,
|
||||||
|
complexity=complexity,
|
||||||
|
recompute_embeddings=recompute,
|
||||||
|
expected_zmq_port=port,
|
||||||
|
)
|
||||||
|
return time.time() - t0
|
||||||
|
|
||||||
|
if repeats <= 1:
|
||||||
|
t = _once()
|
||||||
|
else:
|
||||||
|
vals = [_once() for _ in range(repeats)]
|
||||||
|
vals.sort()
|
||||||
|
t = vals[len(vals) // 2]
|
||||||
|
|
||||||
|
searcher.cleanup()
|
||||||
|
return t
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
base = Path.cwd() / ".leann" / "indexes" / "bench"
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("--num-docs", type=int, default=5000)
|
||||||
|
parser.add_argument("--repeats", type=int, default=3)
|
||||||
|
parser.add_argument("--complexity", type=int, default=32)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
base = Path.cwd() / ".leann" / "indexes" / f"bench_n{args.num_docs}"
|
||||||
base.parent.mkdir(parents=True, exist_ok=True)
|
base.parent.mkdir(parents=True, exist_ok=True)
|
||||||
index_path_recompute = str(base / "recompute.leann")
|
# ---------- Build HNSW variants ----------
|
||||||
index_path_norecompute = str(base / "norecompute.leann")
|
hnsw_r = str(base / f"hnsw_recompute_n{args.num_docs}.leann")
|
||||||
|
hnsw_nr = str(base / f"hnsw_norecompute_n{args.num_docs}.leann")
|
||||||
|
ensure_index_hnsw(hnsw_r, num_docs=args.num_docs, is_recompute=True)
|
||||||
|
ensure_index_hnsw(hnsw_nr, num_docs=args.num_docs, is_recompute=False)
|
||||||
|
|
||||||
# Build two variants: pruned (recompute) and non-compact (no-recompute)
|
# ---------- Build DiskANN variants ----------
|
||||||
ensure_index(index_path_recompute, is_recompute=True, is_compact=True)
|
diskann_r = str(base / "diskann_r.leann")
|
||||||
ensure_index(index_path_norecompute, is_recompute=False, is_compact=False)
|
diskann_nr = str(base / "diskann_nr.leann")
|
||||||
|
ensure_index_diskann(diskann_r, num_docs=args.num_docs, is_recompute=True)
|
||||||
|
ensure_index_diskann(diskann_nr, num_docs=args.num_docs, is_recompute=False)
|
||||||
|
|
||||||
# Warm up
|
# ---------- Helpers ----------
|
||||||
bench_once(index_path_recompute, recompute=True)
|
|
||||||
bench_once(index_path_norecompute, recompute=False)
|
|
||||||
|
|
||||||
t_recompute = bench_once(index_path_recompute, recompute=True)
|
|
||||||
t_norecompute = bench_once(index_path_norecompute, recompute=False)
|
|
||||||
|
|
||||||
# Compute sizes only for files belonging to each index prefix
|
|
||||||
def _size_for(prefix: str) -> int:
|
def _size_for(prefix: str) -> int:
|
||||||
p = Path(prefix)
|
p = Path(prefix)
|
||||||
base = p.parent
|
base_dir = p.parent
|
||||||
stem = p.stem # e.g., 'recompute.leann'
|
stem = p.stem
|
||||||
total = 0
|
total = 0
|
||||||
for f in base.iterdir():
|
for f in base_dir.iterdir():
|
||||||
if f.is_file() and f.name.startswith(stem):
|
if f.is_file() and f.name.startswith(stem):
|
||||||
total += f.stat().st_size
|
total += f.stat().st_size
|
||||||
return total
|
return total
|
||||||
|
|
||||||
size_recompute = _size_for(index_path_recompute)
|
# ---------- HNSW benchmark ----------
|
||||||
size_norecompute = _size_for(index_path_norecompute)
|
t_hnsw_r = _bench_group(
|
||||||
|
hnsw_r, True, "test document number 42", repeats=args.repeats, complexity=args.complexity
|
||||||
|
)
|
||||||
|
t_hnsw_nr = _bench_group(
|
||||||
|
hnsw_nr, False, "test document number 42", repeats=args.repeats, complexity=args.complexity
|
||||||
|
)
|
||||||
|
size_hnsw_r = _size_for(hnsw_r)
|
||||||
|
size_hnsw_nr = _size_for(hnsw_nr)
|
||||||
|
|
||||||
print("Benchmark results (HNSW):")
|
print("Benchmark results (HNSW):")
|
||||||
|
print(f" recompute=True: search_time={t_hnsw_r:.3f}s, size={size_hnsw_r / 1024 / 1024:.1f}MB")
|
||||||
print(
|
print(
|
||||||
f" recompute=True: search_time={t_recompute:.3f}s, size={size_recompute / 1024 / 1024:.1f}MB"
|
f" recompute=False: search_time={t_hnsw_nr:.3f}s, size={size_hnsw_nr / 1024 / 1024:.1f}MB"
|
||||||
)
|
)
|
||||||
print(
|
print(" Expectation: no-recompute should be faster but larger on disk.")
|
||||||
f" recompute=False: search_time={t_norecompute:.3f}s, size={size_norecompute / 1024 / 1024:.1f}MB"
|
|
||||||
|
# ---------- DiskANN benchmark ----------
|
||||||
|
t_diskann_r = _bench_group(
|
||||||
|
diskann_r, True, "DiskANN R test doc 123", repeats=args.repeats, complexity=args.complexity
|
||||||
)
|
)
|
||||||
print("Expectation: no-recompute should be faster but larger on disk.")
|
t_diskann_nr = _bench_group(
|
||||||
|
diskann_nr,
|
||||||
|
False,
|
||||||
|
"DiskANN NR test doc 123",
|
||||||
|
repeats=args.repeats,
|
||||||
|
complexity=args.complexity,
|
||||||
|
)
|
||||||
|
size_diskann_r = _size_for(diskann_r)
|
||||||
|
size_diskann_nr = _size_for(diskann_nr)
|
||||||
|
|
||||||
# DiskANN quick benchmark (final rerank vs no-recompute)
|
print("\nBenchmark results (DiskANN):")
|
||||||
try:
|
print(f" build(recompute=True, partition): size={size_diskann_r / 1024 / 1024:.1f}MB")
|
||||||
index_path_diskann_nr = str(base / "diskann_nr.leann")
|
print(f" build(recompute=False): size={size_diskann_nr / 1024 / 1024:.1f}MB")
|
||||||
index_path_diskann_r = str(base / "diskann_r.leann")
|
print(f" search recompute=True (final rerank): {t_diskann_r:.3f}s")
|
||||||
|
print(f" search recompute=False (PQ only): {t_diskann_nr:.3f}s")
|
||||||
# Build DiskANN no-recompute (keeps full disk index)
|
|
||||||
if not (
|
|
||||||
Path(index_path_diskann_nr).parent / f"{Path(index_path_diskann_nr).stem}.meta.json"
|
|
||||||
).exists():
|
|
||||||
b = LeannBuilder(
|
|
||||||
backend_name="diskann",
|
|
||||||
embedding_model=os.getenv("LEANN_EMBED_MODEL", "facebook/contriever"),
|
|
||||||
embedding_mode=os.getenv("LEANN_EMBED_MODE", "sentence-transformers"),
|
|
||||||
graph_degree=32,
|
|
||||||
complexity=64,
|
|
||||||
num_threads=4,
|
|
||||||
is_recompute=False,
|
|
||||||
)
|
|
||||||
for i in range(5000):
|
|
||||||
b.add_text(f"DiskANN NR test doc {i} for quick benchmark.")
|
|
||||||
b.build_index(index_path_diskann_nr)
|
|
||||||
|
|
||||||
# Build DiskANN recompute (enables partition; prunes redundant files)
|
|
||||||
if not (
|
|
||||||
Path(index_path_diskann_r).parent / f"{Path(index_path_diskann_r).stem}.meta.json"
|
|
||||||
).exists():
|
|
||||||
b = LeannBuilder(
|
|
||||||
backend_name="diskann",
|
|
||||||
embedding_model=os.getenv("LEANN_EMBED_MODEL", "facebook/contriever"),
|
|
||||||
embedding_mode=os.getenv("LEANN_EMBED_MODE", "sentence-transformers"),
|
|
||||||
graph_degree=32,
|
|
||||||
complexity=64,
|
|
||||||
num_threads=4,
|
|
||||||
is_recompute=True,
|
|
||||||
)
|
|
||||||
for i in range(5000):
|
|
||||||
b.add_text(f"DiskANN R test doc {i} for quick benchmark.")
|
|
||||||
b.build_index(index_path_diskann_r)
|
|
||||||
|
|
||||||
# Measure size per build prefix
|
|
||||||
def _size_for(prefix: str) -> int:
|
|
||||||
p = Path(prefix)
|
|
||||||
base_dir = p.parent
|
|
||||||
stem = p.stem
|
|
||||||
total = 0
|
|
||||||
for f in base_dir.iterdir():
|
|
||||||
if f.is_file() and f.name.startswith(stem):
|
|
||||||
total += f.stat().st_size
|
|
||||||
return total
|
|
||||||
|
|
||||||
size_diskann_nr = _size_for(index_path_diskann_nr)
|
|
||||||
size_diskann_r = _size_for(index_path_diskann_r)
|
|
||||||
|
|
||||||
# Speed on recompute-build (final rerank vs no-recompute)
|
|
||||||
s = LeannSearcher(index_path_diskann_r)
|
|
||||||
_ = s.search("DiskANN R test doc 123", top_k=10, complexity=64, recompute_embeddings=False)
|
|
||||||
_ = s.search("DiskANN R test doc 123", top_k=10, complexity=64, recompute_embeddings=True)
|
|
||||||
|
|
||||||
t0 = time.time()
|
|
||||||
_ = s.search("DiskANN R test doc 123", top_k=10, complexity=64, recompute_embeddings=False)
|
|
||||||
t_diskann_nr = time.time() - t0
|
|
||||||
|
|
||||||
t0 = time.time()
|
|
||||||
_ = s.search("DiskANN R test doc 123", top_k=10, complexity=64, recompute_embeddings=True)
|
|
||||||
t_diskann_r = time.time() - t0
|
|
||||||
|
|
||||||
print("\nBenchmark results (DiskANN):")
|
|
||||||
print(f" build(recompute=False): size={size_diskann_nr / 1024 / 1024:.1f}MB")
|
|
||||||
print(f" build(recompute=True, partition): size={size_diskann_r / 1024 / 1024:.1f}MB")
|
|
||||||
print(f" search recompute=False: {t_diskann_nr:.3f}s (on recompute-build)")
|
|
||||||
print(f" search recompute=True (final rerank): {t_diskann_r:.3f}s (on recompute-build)")
|
|
||||||
except Exception as e:
|
|
||||||
print(f"DiskANN quick benchmark skipped due to: {e}")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|||||||
@@ -360,25 +360,31 @@ Trade-offs:
|
|||||||
- Significantly higher storage (10–100× vs selective recomputation)
|
- Significantly higher storage (10–100× vs selective recomputation)
|
||||||
- Slightly larger memory footprint during build and search
|
- Slightly larger memory footprint during build and search
|
||||||
|
|
||||||
Real-world quick benchmark (HNSW, 5k texts; script `benchmarks/benchmark_no_recompute.py`):
|
Real-world quick benchmark (`benchmarks/benchmark_no_recompute.py`, 5k texts):
|
||||||
|
|
||||||
```text
|
- HNSW
|
||||||
recompute=True: ~7.55s; size ~1.1MB
|
|
||||||
recompute=False: ~0.11s; size ~16.6MB
|
|
||||||
|
|
||||||
Conclusion: no-recompute is much faster but uses more storage; recompute is smaller but has higher first-hop latency.
|
```text
|
||||||
```
|
recompute=True: ~7.55s; size ~1.1MB
|
||||||
|
recompute=False: ~0.11s; size ~16.6MB
|
||||||
|
```
|
||||||
|
|
||||||
DiskANN (5k texts; same script, final rerank strategy):
|
- DiskANN
|
||||||
|
|
||||||
```text
|
```text
|
||||||
build(recompute=False): size ~24.8MB
|
Build sizes (5k):
|
||||||
build(recompute=True, partition): size ~5.7MB
|
- recompute=True (partition): ~5.7MB
|
||||||
search recompute=False: ~0.250s (on recompute-build)
|
- recompute=False: ~24.8MB
|
||||||
search recompute=True (final rerank): ~0.120s (on recompute-build)
|
Search latency (on recompute-build, median of 5 runs; macOS, complexity=32):
|
||||||
|
- recompute=False (PQ traversal only): ~0.013–0.014s
|
||||||
|
- recompute=True (final rerank): ~0.033–0.046s
|
||||||
|
On 20k texts (same settings):
|
||||||
|
- recompute=False: ~0.013–0.014s
|
||||||
|
- recompute=True: ~0.033–0.036s
|
||||||
|
```
|
||||||
|
|
||||||
|
Conclusion: for HNSW, no-recompute is faster but larger; for DiskANN, no-recompute (PQ traversal only) is fastest at the cost of potentially lower accuracy, while recompute (final rerank) adds ~20–30ms for higher accuracy. DiskANN recompute-build also enables partitioning, reducing storage.
|
||||||
|
|
||||||
Conclusion: DiskANN's recompute-build enables partitioning to reduce storage; enabling final rerank further improves latency while keeping traversal PQ-fast.
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
## Further Reading
|
## Further Reading
|
||||||
|
|||||||
@@ -441,14 +441,13 @@ class DiskannSearcher(BaseSearcher):
|
|||||||
else: # "global"
|
else: # "global"
|
||||||
use_global_pruning = True
|
use_global_pruning = True
|
||||||
|
|
||||||
# Perform search with suppressed C++ output based on log level
|
|
||||||
# Strategy:
|
# Strategy:
|
||||||
# - Traversal always uses PQ distances
|
# - Traversal always uses PQ distances
|
||||||
# - If recompute_embeddings=True, do a single final rerank via deferred fetch
|
# - If recompute_embeddings=True, do a single final rerank via deferred fetch
|
||||||
# (fetch embeddings for the final candidate set only)
|
# (fetch embeddings for the final candidate set only)
|
||||||
# - Do not recompute neighbor distances along the path
|
# - Do not recompute neighbor distances along the path
|
||||||
use_deferred_fetch = True if recompute_embeddings else False
|
use_deferred_fetch = True if recompute_embeddings else False
|
||||||
recompute_neighors = False
|
recompute_neighors = False # Expected typo. For backward compatibility.
|
||||||
|
|
||||||
with suppress_cpp_output_if_needed():
|
with suppress_cpp_output_if_needed():
|
||||||
labels, distances = self._index.batch_search(
|
labels, distances = self._index.batch_search(
|
||||||
|
|||||||
10
uv.lock
generated
10
uv.lock
generated
@@ -2223,7 +2223,7 @@ wheels = [
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "leann-backend-diskann"
|
name = "leann-backend-diskann"
|
||||||
version = "0.2.8"
|
version = "0.2.9"
|
||||||
source = { editable = "packages/leann-backend-diskann" }
|
source = { editable = "packages/leann-backend-diskann" }
|
||||||
dependencies = [
|
dependencies = [
|
||||||
{ name = "leann-core" },
|
{ name = "leann-core" },
|
||||||
@@ -2235,14 +2235,14 @@ dependencies = [
|
|||||||
|
|
||||||
[package.metadata]
|
[package.metadata]
|
||||||
requires-dist = [
|
requires-dist = [
|
||||||
{ name = "leann-core", specifier = "==0.2.8" },
|
{ name = "leann-core", specifier = "==0.2.9" },
|
||||||
{ name = "numpy" },
|
{ name = "numpy" },
|
||||||
{ name = "protobuf", specifier = ">=3.19.0" },
|
{ name = "protobuf", specifier = ">=3.19.0" },
|
||||||
]
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "leann-backend-hnsw"
|
name = "leann-backend-hnsw"
|
||||||
version = "0.2.8"
|
version = "0.2.9"
|
||||||
source = { editable = "packages/leann-backend-hnsw" }
|
source = { editable = "packages/leann-backend-hnsw" }
|
||||||
dependencies = [
|
dependencies = [
|
||||||
{ name = "leann-core" },
|
{ name = "leann-core" },
|
||||||
@@ -2255,7 +2255,7 @@ dependencies = [
|
|||||||
|
|
||||||
[package.metadata]
|
[package.metadata]
|
||||||
requires-dist = [
|
requires-dist = [
|
||||||
{ name = "leann-core", specifier = "==0.2.8" },
|
{ name = "leann-core", specifier = "==0.2.9" },
|
||||||
{ name = "msgpack", specifier = ">=1.0.0" },
|
{ name = "msgpack", specifier = ">=1.0.0" },
|
||||||
{ name = "numpy" },
|
{ name = "numpy" },
|
||||||
{ name = "pyzmq", specifier = ">=23.0.0" },
|
{ name = "pyzmq", specifier = ">=23.0.0" },
|
||||||
@@ -2263,7 +2263,7 @@ requires-dist = [
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "leann-core"
|
name = "leann-core"
|
||||||
version = "0.2.8"
|
version = "0.2.9"
|
||||||
source = { editable = "packages/leann-core" }
|
source = { editable = "packages/leann-core" }
|
||||||
dependencies = [
|
dependencies = [
|
||||||
{ name = "accelerate" },
|
{ name = "accelerate" },
|
||||||
|
|||||||
Reference in New Issue
Block a user