Docs/Core: Low-Resource Setups, SkyPilot Option, and No-Recompute (#45)

* docs: add SkyPilot template and instructions for running embeddings/index build on cloud GPU

* docs: add low-resource note in README; point to config guide; suggest OpenAI embeddings, SkyPilot remote build, and --no-recompute

* docs: consolidate low-resource guidance into config guide; README points to it

* cli: add --no-recompute and --no-recompute-embeddings flags; docs: clarify HNSW requires --no-compact when disabling recompute

* docs: dedupe recomputation guidance; keep single Low-resource setups section

* sky: expand leann-build.yaml with configurable params and flags (backend, recompute, compact, embedding options)

* hnsw: auto-disable compact when --no-recompute is used; docs: expand SkyPilot with -e overrides and copy-back example

* docs+sky: simplify SkyPilot flow (auto-build on launch, rsync copy-back); clarify HNSW auto non-compact when no-recompute

* feat: auto compact for hnsw when recompute

* reader: non-destructive portability (relative hints + fallback); fix comments; sky: refine yaml

* cli: unify flags to --recompute/--no-recompute for build/search/ask; docs: update references

* chore: remove

* hnsw: move pruned/no-recompute assertion into backend; api: drop global assertion; docs: will adjust after benchmarking

* cli: use argparse.BooleanOptionalAction for paired flags (--recompute/--compact) across build/search/ask

* docs: a real example on recompute

* benchmarks: fix and extend HNSW+DiskANN recompute vs no-recompute; docs: add fresh numbers and DiskANN notes

* benchmarks: unify HNSW & DiskANN into one clean script; isolate groups, fixed ports, warm-up, param complexity

* docs: diskann recompute

* core: auto-cleanup for LeannSearcher/LeannChat (__enter__/__exit__/__del__); ensure server terminate/kill robustness; benchmarks: use searcher.cleanup(); docs: suggest uv run

* fix: hang on warnings

* docs: boolean flags

* docs: leann help
This commit is contained in:
Andy Lee
2025-08-15 12:03:19 -07:00
committed by GitHub
parent 00eeadb9dd
commit db3c63c441
12 changed files with 529 additions and 101 deletions

View File

@@ -71,6 +71,8 @@ source .venv/bin/activate
uv pip install leann
```
> Low-resource? See “Low-resource setups” in the [Configuration Guide](docs/configuration-guide.md#low-resource-setups).
<details>
<summary>
<strong>🔧 Build from Source (Recommended for development)</strong>
@@ -184,34 +186,34 @@ All RAG examples share these common parameters. **Interactive mode** is availabl
```bash
# Core Parameters (General preprocessing for all examples)
--index-dir DIR # Directory to store the index (default: current directory)
--query "YOUR QUESTION" # Single query mode. Omit for interactive chat (type 'quit' to exit), and now you can play with your index interactively
--max-items N # Limit data preprocessing (default: -1, process all data)
--force-rebuild # Force rebuild index even if it exists
--index-dir DIR # Directory to store the index (default: current directory)
--query "YOUR QUESTION" # Single query mode. Omit for interactive chat (type 'quit' to exit), and now you can play with your index interactively
--max-items N # Limit data preprocessing (default: -1, process all data)
--force-rebuild # Force rebuild index even if it exists
# Embedding Parameters
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small, mlx-community/Qwen3-Embedding-0.6B-8bit or nomic-embed-text
--embedding-mode MODE # sentence-transformers, openai, mlx, or ollama
--embedding-model MODEL # e.g., facebook/contriever, text-embedding-3-small, mlx-community/Qwen3-Embedding-0.6B-8bit or nomic-embed-text
--embedding-mode MODE # sentence-transformers, openai, mlx, or ollama
# LLM Parameters (Text generation models)
--llm TYPE # LLM backend: openai, ollama, or hf (default: openai)
--llm-model MODEL # Model name (default: gpt-4o) e.g., gpt-4o-mini, llama3.2:1b, Qwen/Qwen2.5-1.5B-Instruct
--thinking-budget LEVEL # Thinking budget for reasoning models: low/medium/high (supported by o3, o3-mini, GPT-Oss:20b, and other reasoning models)
--llm TYPE # LLM backend: openai, ollama, or hf (default: openai)
--llm-model MODEL # Model name (default: gpt-4o) e.g., gpt-4o-mini, llama3.2:1b, Qwen/Qwen2.5-1.5B-Instruct
--thinking-budget LEVEL # Thinking budget for reasoning models: low/medium/high (supported by o3, o3-mini, GPT-Oss:20b, and other reasoning models)
# Search Parameters
--top-k N # Number of results to retrieve (default: 20)
--search-complexity N # Search complexity for graph traversal (default: 32)
--top-k N # Number of results to retrieve (default: 20)
--search-complexity N # Search complexity for graph traversal (default: 32)
# Chunking Parameters
--chunk-size N # Size of text chunks (default varies by source: 256 for most, 192 for WeChat)
--chunk-overlap N # Overlap between chunks (default varies: 25-128 depending on source)
--chunk-size N # Size of text chunks (default varies by source: 256 for most, 192 for WeChat)
--chunk-overlap N # Overlap between chunks (default varies: 25-128 depending on source)
# Index Building Parameters
--backend-name NAME # Backend to use: hnsw or diskann (default: hnsw)
--graph-degree N # Graph degree for index construction (default: 32)
--build-complexity N # Build complexity for index construction (default: 64)
--no-compact # Disable compact index storage (compact storage IS enabled to save storage by default)
--no-recompute # Disable embedding recomputation (recomputation IS enabled to save storage by default)
--backend-name NAME # Backend to use: hnsw or diskann (default: hnsw)
--graph-degree N # Graph degree for index construction (default: 32)
--build-complexity N # Build complexity for index construction (default: 64)
--compact / --no-compact # Use compact storage (default: true). Must be `no-compact` for `no-recompute` build.
--recompute / --no-recompute # Enable/disable embedding recomputation (default: enabled). Should not do a `no-recompute` search in a `recompute` build.
```
</details>
@@ -482,27 +484,29 @@ leann list
```
**Key CLI features:**
- Auto-detects document formats (PDF, TXT, MD, DOCX)
- Auto-detects document formats (PDF, TXT, MD, DOCX, PPTX + code files)
- Smart text chunking with overlap
- Multiple LLM providers (Ollama, OpenAI, HuggingFace)
- Organized index storage in `~/.leann/indexes/`
- Organized index storage in `.leann/indexes/` (project-local)
- Support for advanced search parameters
<details>
<summary><strong>📋 Click to expand: Complete CLI Reference</strong></summary>
You can use `leann --help`, or `leann build --help`, `leann search --help`, `leann ask --help` to get the complete CLI reference.
**Build Command:**
```bash
leann build INDEX_NAME --docs DIRECTORY [OPTIONS]
leann build INDEX_NAME --docs DIRECTORY|FILE [DIRECTORY|FILE ...] [OPTIONS]
Options:
--backend {hnsw,diskann} Backend to use (default: hnsw)
--embedding-model MODEL Embedding model (default: facebook/contriever)
--graph-degree N Graph degree (default: 32)
--complexity N Build complexity (default: 64)
--force Force rebuild existing index
--compact Use compact storage (default: true)
--recompute Enable recomputation (default: true)
--graph-degree N Graph degree (default: 32)
--complexity N Build complexity (default: 64)
--force Force rebuild existing index
--compact / --no-compact Use compact storage (default: true). Must be `no-compact` for `no-recompute` build.
--recompute / --no-recompute Enable recomputation (default: true)
```
**Search Command:**
@@ -510,9 +514,9 @@ Options:
leann search INDEX_NAME QUERY [OPTIONS]
Options:
--top-k N Number of results (default: 5)
--complexity N Search complexity (default: 64)
--recompute-embeddings Use recomputation for highest accuracy
--top-k N Number of results (default: 5)
--complexity N Search complexity (default: 64)
--recompute / --no-recompute Enable/disable embedding recomputation (default: enabled). Should not do a `no-recompute` search in a `recompute` build.
--pruning-strategy {global,local,proportional}
```