Docs/Core: Low-Resource Setups, SkyPilot Option, and No-Recompute (#45)
* docs: add SkyPilot template and instructions for running embeddings/index build on cloud GPU * docs: add low-resource note in README; point to config guide; suggest OpenAI embeddings, SkyPilot remote build, and --no-recompute * docs: consolidate low-resource guidance into config guide; README points to it * cli: add --no-recompute and --no-recompute-embeddings flags; docs: clarify HNSW requires --no-compact when disabling recompute * docs: dedupe recomputation guidance; keep single Low-resource setups section * sky: expand leann-build.yaml with configurable params and flags (backend, recompute, compact, embedding options) * hnsw: auto-disable compact when --no-recompute is used; docs: expand SkyPilot with -e overrides and copy-back example * docs+sky: simplify SkyPilot flow (auto-build on launch, rsync copy-back); clarify HNSW auto non-compact when no-recompute * feat: auto compact for hnsw when recompute * reader: non-destructive portability (relative hints + fallback); fix comments; sky: refine yaml * cli: unify flags to --recompute/--no-recompute for build/search/ask; docs: update references * chore: remove * hnsw: move pruned/no-recompute assertion into backend; api: drop global assertion; docs: will adjust after benchmarking * cli: use argparse.BooleanOptionalAction for paired flags (--recompute/--compact) across build/search/ask * docs: a real example on recompute * benchmarks: fix and extend HNSW+DiskANN recompute vs no-recompute; docs: add fresh numbers and DiskANN notes * benchmarks: unify HNSW & DiskANN into one clean script; isolate groups, fixed ports, warm-up, param complexity * docs: diskann recompute * core: auto-cleanup for LeannSearcher/LeannChat (__enter__/__exit__/__del__); ensure server terminate/kill robustness; benchmarks: use searcher.cleanup(); docs: suggest uv run * fix: hang on warnings * docs: boolean flags * docs: leann help
This commit is contained in:
@@ -441,9 +441,14 @@ class DiskannSearcher(BaseSearcher):
|
||||
else: # "global"
|
||||
use_global_pruning = True
|
||||
|
||||
# Perform search with suppressed C++ output based on log level
|
||||
use_deferred_fetch = kwargs.get("USE_DEFERRED_FETCH", True)
|
||||
recompute_neighors = False
|
||||
# Strategy:
|
||||
# - Traversal always uses PQ distances
|
||||
# - If recompute_embeddings=True, do a single final rerank via deferred fetch
|
||||
# (fetch embeddings for the final candidate set only)
|
||||
# - Do not recompute neighbor distances along the path
|
||||
use_deferred_fetch = True if recompute_embeddings else False
|
||||
recompute_neighors = False # Expected typo. For backward compatibility.
|
||||
|
||||
with suppress_cpp_output_if_needed():
|
||||
labels, distances = self._index.batch_search(
|
||||
query,
|
||||
|
||||
Reference in New Issue
Block a user