feat: Add support for configurable local LLM endpoints (#115)
* feat: support configurable local llm endpoints * docs
This commit is contained in:
@@ -10,7 +10,7 @@ import sys
|
||||
import threading
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
from typing import Any, Optional
|
||||
|
||||
import numpy as np
|
||||
import zmq
|
||||
@@ -32,6 +32,16 @@ if not logger.handlers:
|
||||
logger.propagate = False
|
||||
|
||||
|
||||
_RAW_PROVIDER_OPTIONS = os.getenv("LEANN_EMBEDDING_OPTIONS")
|
||||
try:
|
||||
PROVIDER_OPTIONS: dict[str, Any] = (
|
||||
json.loads(_RAW_PROVIDER_OPTIONS) if _RAW_PROVIDER_OPTIONS else {}
|
||||
)
|
||||
except json.JSONDecodeError:
|
||||
logger.warning("Failed to parse LEANN_EMBEDDING_OPTIONS; ignoring provider options")
|
||||
PROVIDER_OPTIONS = {}
|
||||
|
||||
|
||||
def create_diskann_embedding_server(
|
||||
passages_file: Optional[str] = None,
|
||||
zmq_port: int = 5555,
|
||||
@@ -181,7 +191,12 @@ def create_diskann_embedding_server(
|
||||
logger.debug(f"Text lengths: {[len(t) for t in texts[:5]]}") # Show first 5
|
||||
|
||||
# Process embeddings using unified computation
|
||||
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
|
||||
embeddings = compute_embeddings(
|
||||
texts,
|
||||
model_name,
|
||||
mode=embedding_mode,
|
||||
provider_options=PROVIDER_OPTIONS,
|
||||
)
|
||||
logger.info(
|
||||
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
|
||||
)
|
||||
@@ -296,7 +311,12 @@ def create_diskann_embedding_server(
|
||||
continue
|
||||
|
||||
# Process the request
|
||||
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
|
||||
embeddings = compute_embeddings(
|
||||
texts,
|
||||
model_name,
|
||||
mode=embedding_mode,
|
||||
provider_options=PROVIDER_OPTIONS,
|
||||
)
|
||||
logger.info(f"Computed embeddings shape: {embeddings.shape}")
|
||||
|
||||
# Validation
|
||||
|
||||
Reference in New Issue
Block a user