fix: Restore embedding-mode parameter to all examples

- All examples now have --embedding-mode parameter (unified interface benefit)
- Default is 'sentence-transformers' (consistent with original behavior)
- Users can now use OpenAI or MLX embeddings with any data source
- Maintains functional equivalence with original scripts
This commit is contained in:
Andy Lee
2025-07-29 13:33:40 -07:00
parent ff1b622bdd
commit ddc789b231
7 changed files with 25 additions and 36 deletions

View File

@@ -23,12 +23,10 @@ class BaseRAGExample(ABC):
name: str,
description: str,
default_index_name: str,
include_embedding_mode: bool = True,
):
self.name = name
self.description = description
self.default_index_name = default_index_name
self.include_embedding_mode = include_embedding_mode
self.parser = self._create_parser()
def _create_parser(self) -> argparse.ArgumentParser:
@@ -73,14 +71,13 @@ class BaseRAGExample(ABC):
default=embedding_model_default,
help=f"Embedding model to use (default: {embedding_model_default})",
)
if self.include_embedding_mode:
embedding_group.add_argument(
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx"],
help="Embedding backend mode (default: sentence-transformers)",
)
embedding_group.add_argument(
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx"],
help="Embedding backend mode (default: sentence-transformers)",
)
# LLM parameters
llm_group = parser.add_argument_group("LLM Parameters")
@@ -152,22 +149,16 @@ class BaseRAGExample(ABC):
print(f"\n[Building Index] Creating {self.name} index...")
print(f"Total text chunks: {len(texts)}")
# Build kwargs for LeannBuilder
builder_kwargs = {
"backend_name": "hnsw",
"embedding_model": args.embedding_model,
"graph_degree": 32,
"complexity": 64,
"is_compact": True,
"is_recompute": True,
"num_threads": 1, # Force single-threaded mode
}
# Only add embedding_mode if it's not suppressed (for compatibility)
if hasattr(args, "embedding_mode") and args.embedding_mode is not None:
builder_kwargs["embedding_mode"] = args.embedding_mode
builder = LeannBuilder(**builder_kwargs)
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=args.embedding_model,
embedding_mode=args.embedding_mode,
graph_degree=32,
complexity=64,
is_compact=True,
is_recompute=True,
num_threads=1, # Force single-threaded mode
)
# Add texts in batches for better progress tracking
batch_size = 1000