[EXP] Update the benchmark code (#71)
* chore(hnsw): reorder imports to satisfy ruff I001 * chore: sync changes; fix Ruff import order; update examples, benchmarks, and dependencies - Fix import order in packages/leann-backend-hnsw/leann_backend_hnsw/hnsw_backend.py (Ruff I001) - Update benchmarks/run_evaluation.py - Update apps/base_rag_example.py and leann-core API usage - Add benchmarks/data/README.md - Update uv.lock - Misc cleanup - Note: added paru-bin as an embedded git repo; consider making it a submodule (git rm --cached paru-bin) if unintended * chore: remove unintended embedded repo paru-bin and ignore it Fix CI: avoid missing .gitmodules entry by removing gitlink and adding to .gitignore. * ci: retrigger after removing unintended gitlink (paru-bin) * feat(benchmarks): add --batch-size option and plumb through to HNSW search (default 0) * feat(hnsw): add batch_size to LeannSearcher.search and LeannChat.ask; forward only for HNSW backend * chore(logging): surface recompute and batching params; enable INFO logging in benchmark * feat(embeddings): add optional manual tokenization path (HF tokenizer+model) with mean pooling; default remains SentenceTransformer.encode * fix micro bench and fix pre commit * update readme --------- Co-authored-by: yichuan-w <yichuan-w@users.noreply.github.com>
This commit is contained in:
44
benchmarks/data/README.md
Executable file
44
benchmarks/data/README.md
Executable file
@@ -0,0 +1,44 @@
|
||||
---
|
||||
license: mit
|
||||
---
|
||||
|
||||
# LEANN-RAG Evaluation Data
|
||||
|
||||
This repository contains the necessary data to run the recall evaluation scripts for the [LEANN-RAG](https://huggingface.co/LEANN-RAG) project.
|
||||
|
||||
## Dataset Components
|
||||
|
||||
This dataset is structured into three main parts:
|
||||
|
||||
1. **Pre-built LEANN Indices**:
|
||||
* `dpr/`: A pre-built index for the DPR dataset.
|
||||
* `rpj_wiki/`: A pre-built index for the RPJ-Wiki dataset.
|
||||
These indices were created using the `leann-core` library and are required by the `LeannSearcher`.
|
||||
|
||||
2. **Ground Truth Data**:
|
||||
* `ground_truth/`: Contains the ground truth files (`flat_results_nq_k3.json`) for both the DPR and RPJ-Wiki datasets. These files map queries to the original passage IDs from the Natural Questions benchmark, evaluated using the Contriever model.
|
||||
|
||||
3. **Queries**:
|
||||
* `queries/`: Contains the `nq_open.jsonl` file with the Natural Questions queries used for the evaluation.
|
||||
|
||||
## Usage
|
||||
|
||||
To use this data, you can download it locally using the `huggingface-hub` library. First, install the library:
|
||||
|
||||
```bash
|
||||
pip install huggingface-hub
|
||||
```
|
||||
|
||||
Then, you can download the entire dataset to a local directory (e.g., `data/`) with the following Python script:
|
||||
|
||||
```python
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
snapshot_download(
|
||||
repo_id="LEANN-RAG/leann-rag-evaluation-data",
|
||||
repo_type="dataset",
|
||||
local_dir="data"
|
||||
)
|
||||
```
|
||||
|
||||
This will download all the necessary files into a local `data` folder, preserving the repository structure. The evaluation scripts in the main [LEANN-RAG Space](https://huggingface.co/LEANN-RAG) are configured to work with this data structure.
|
||||
Reference in New Issue
Block a user