change chinese

This commit is contained in:
yichuan520030910320
2025-07-19 19:54:02 -07:00
parent d0c20b14d5
commit e728449b8f
2 changed files with 89 additions and 86 deletions

View File

@@ -175,13 +175,13 @@ def create_embedding_server_thread(
enable_warmup: bool = False,
):
"""
在当前线程中创建并运行 embedding server
这个函数设计为在单独的线程中调用
Create and run embedding server in the current thread
This function is designed to be called in a separate thread
"""
logger.info(f"Initializing embedding server thread on port {zmq_port}")
try:
# 检查端口是否已被占用
# Check if port is already occupied
import socket
def check_port(port):
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
@@ -212,11 +212,11 @@ def create_embedding_server_thread(
cuda_available = False
mps_available = False
elif embedding_mode == "sentence-transformers":
# 初始化模型
# Initialize model
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
import torch
# 选择设备
# Select device
mps_available = hasattr(torch.backends, 'mps') and torch.backends.mps.is_available()
cuda_available = torch.cuda.is_available()
@@ -230,11 +230,11 @@ def create_embedding_server_thread(
device = torch.device("cpu")
logger.info("Using CPU device")
# 加载模型
# Load model
logger.info(f"Loading model {model_name}")
model = AutoModel.from_pretrained(model_name).to(device).eval()
# 优化模型
# Optimize model
if cuda_available or mps_available:
try:
model = model.half()
@@ -324,7 +324,7 @@ def create_embedding_server_thread(
print(f"Error during Protobuf ZMQ warmup: {e}")
class DeviceTimer:
"""设备计时器"""
"""Device timer"""
def __init__(self, name="", device=device):
self.name = name
self.device = device
@@ -369,60 +369,63 @@ def create_embedding_server_thread(
return self.end_time - self.start_time
def print_elapsed(self):
print(f"Time taken for {self.name}: {self.elapsed_time():.6f} seconds")
elapsed = self.elapsed_time()
print(f"[{self.name}] Elapsed time: {elapsed:.3f}s")
def process_batch_pytorch(texts_batch, ids_batch, missing_ids):
"""处理文本批次"""
batch_size = len(texts_batch)
logger.info(f"Processing batch of size {batch_size}")
"""Process text batch"""
if not texts_batch:
return np.array([])
tokenize_timer = DeviceTimer("tokenization (batch)", device)
to_device_timer = DeviceTimer("transfer to device (batch)", device)
embed_timer = DeviceTimer("embedding (batch)", device)
pool_timer = DeviceTimer("mean pooling (batch)", device)
# Filter out empty texts and their corresponding IDs
valid_texts = []
valid_ids = []
for i, text in enumerate(texts_batch):
if text.strip(): # Only include non-empty texts
valid_texts.append(text)
valid_ids.append(ids_batch[i])
with tokenize_timer.timing():
encoded_batch = tokenizer.batch_encode_plus(
texts_batch,
padding="max_length",
if not valid_texts:
print("WARNING: No valid texts in batch")
return np.array([])
# Tokenize
token_timer = DeviceTimer("tokenization")
with token_timer.timing():
inputs = tokenizer(
valid_texts,
padding=True,
truncation=True,
max_length=256,
return_tensors="pt",
return_token_type_ids=False,
)
tokenize_timer.print_elapsed()
max_length=512,
return_tensors="pt"
).to(device)
seq_length = encoded_batch["input_ids"].size(1)
print(f"Batch size: {batch_size}, Sequence length: {seq_length}")
with to_device_timer.timing():
enc = {k: v.to(device) for k, v in encoded_batch.items()}
to_device_timer.print_elapsed()
with torch.no_grad():
with embed_timer.timing():
out = model(enc["input_ids"], enc["attention_mask"])
embed_timer.print_elapsed()
with pool_timer.timing():
hidden_states = out.last_hidden_state if hasattr(out, "last_hidden_state") else out
mask_expanded = enc["attention_mask"].unsqueeze(-1).expand(hidden_states.size()).float()
# Compute embeddings
embed_timer = DeviceTimer("embedding computation")
with embed_timer.timing():
with torch.no_grad():
outputs = model(**inputs)
hidden_states = outputs.last_hidden_state
# Mean pooling
attention_mask = inputs['attention_mask']
mask_expanded = attention_mask.unsqueeze(-1).expand(hidden_states.size()).float()
sum_embeddings = torch.sum(hidden_states * mask_expanded, 1)
sum_mask = torch.clamp(mask_expanded.sum(1), min=1e-9)
batch_embeddings = sum_embeddings / sum_mask
pool_timer.print_elapsed()
embed_timer.print_elapsed()
return batch_embeddings.cpu().numpy()
# ZMQ server 主循环 - 修改为REP套接字
# ZMQ server main loop - modified to use REP socket
context = zmq.Context()
socket = context.socket(zmq.ROUTER) # 改为REP套接字
socket = context.socket(zmq.ROUTER) # Changed to REP socket
socket.bind(f"tcp://127.0.0.1:{zmq_port}")
print(f"INFO: ZMQ ROUTER server listening on port {zmq_port}")
# 设置超时
socket.setsockopt(zmq.RCVTIMEO, 5000) # 5秒接收超时
socket.setsockopt(zmq.SNDTIMEO, 300000) # 300秒发送超时
# Set timeouts
socket.setsockopt(zmq.RCVTIMEO, 5000) # 5 second receive timeout
socket.setsockopt(zmq.SNDTIMEO, 300000) # 300 second send timeout
from . import embedding_pb2
@@ -442,18 +445,18 @@ def create_embedding_server_thread(
try:
parts = socket.recv_multipart()
# --- 恢复稳健的消息格式判断 ---
# 必须检查 parts 的长度,避免 IndexError
# --- Restore robust message format detection ---
# Must check parts length to avoid IndexError
if len(parts) >= 3:
identity = parts[0]
# empty = parts[1] # 中间的空帧我们通常不关心
# empty = parts[1] # We usually don't care about the middle empty frame
message = parts[2]
elif len(parts) == 2:
# 也能处理没有空帧的情况
# Can also handle cases without empty frame
identity = parts[0]
message = parts[1]
else:
# 如果收到格式错误的消息,打印警告并忽略它,而不是崩溃
# If received message format is wrong, print warning and ignore it instead of crashing
print(f"WARNING: Received unexpected message format with {len(parts)} parts. Ignoring.")
continue
print(f"INFO: Received ZMQ request from client {identity.hex()[:8]}, size {len(message)} bytes")
@@ -555,17 +558,17 @@ def create_embedding_server_thread(
e2e_start = time.time()
lookup_timer = DeviceTimer("text lookup")
# 解析请求
# Parse request
req_proto = embedding_pb2.NodeEmbeddingRequest()
req_proto.ParseFromString(message)
node_ids = req_proto.node_ids
print(f"INFO: Request for {len(node_ids)} node embeddings: {list(node_ids)}")
# 添加调试信息
# Add debug information
if len(node_ids) > 0:
print(f"DEBUG: Node ID range: {min(node_ids)} to {max(node_ids)}")
# 查找文本
# Look up texts
texts = []
missing_ids = []
with lookup_timer.timing():
@@ -575,8 +578,8 @@ def create_embedding_server_thread(
if txt:
texts.append(txt)
else:
# 如果文本为空,我们仍然需要一个占位符来进行批处理,
# 但将其ID记录为缺失
# If text is empty, we still need a placeholder for batch processing,
# but record its ID as missing
texts.append("")
missing_ids.append(nid)
lookup_timer.print_elapsed()
@@ -584,7 +587,7 @@ def create_embedding_server_thread(
if missing_ids:
print(f"WARNING: Missing passages for IDs: {missing_ids}")
# 处理批次
# Process batch
total_size = len(texts)
print(f"INFO: Total batch size: {total_size}, max_batch_size: {max_batch_size}")
@@ -623,7 +626,7 @@ def create_embedding_server_thread(
else: # sentence-transformers
hidden = process_batch_pytorch(texts, node_ids, missing_ids)
# 序列化响应
# Serialize response
ser_start = time.time()
resp_proto = embedding_pb2.NodeEmbeddingResponse()
@@ -635,7 +638,7 @@ def create_embedding_server_thread(
response_data = resp_proto.SerializeToString()
# REP 套接字发送单个响应
# REP socket sends a single response
socket.send_multipart([identity, b'', response_data])
ser_end = time.time()
@@ -656,11 +659,11 @@ def create_embedding_server_thread(
except Exception as e:
print(f"ERROR: Error in ZMQ server: {e}")
try:
# 发送空响应以维持REQ-REP状态
# Send empty response to maintain REQ-REP state
empty_resp = embedding_pb2.NodeEmbeddingResponse()
socket.send(empty_resp.SerializeToString())
except:
# 如果发送失败,重新创建socket
# If sending fails, recreate socket
socket.close()
socket = context.socket(zmq.REP)
socket.bind(f"tcp://127.0.0.1:{zmq_port}")