change chinese
This commit is contained in:
@@ -175,13 +175,13 @@ def create_embedding_server_thread(
|
|||||||
enable_warmup: bool = False,
|
enable_warmup: bool = False,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
在当前线程中创建并运行 embedding server
|
Create and run embedding server in the current thread
|
||||||
这个函数设计为在单独的线程中调用
|
This function is designed to be called in a separate thread
|
||||||
"""
|
"""
|
||||||
logger.info(f"Initializing embedding server thread on port {zmq_port}")
|
logger.info(f"Initializing embedding server thread on port {zmq_port}")
|
||||||
|
|
||||||
try:
|
try:
|
||||||
# 检查端口是否已被占用
|
# Check if port is already occupied
|
||||||
import socket
|
import socket
|
||||||
def check_port(port):
|
def check_port(port):
|
||||||
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
||||||
@@ -212,11 +212,11 @@ def create_embedding_server_thread(
|
|||||||
cuda_available = False
|
cuda_available = False
|
||||||
mps_available = False
|
mps_available = False
|
||||||
elif embedding_mode == "sentence-transformers":
|
elif embedding_mode == "sentence-transformers":
|
||||||
# 初始化模型
|
# Initialize model
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
# 选择设备
|
# Select device
|
||||||
mps_available = hasattr(torch.backends, 'mps') and torch.backends.mps.is_available()
|
mps_available = hasattr(torch.backends, 'mps') and torch.backends.mps.is_available()
|
||||||
cuda_available = torch.cuda.is_available()
|
cuda_available = torch.cuda.is_available()
|
||||||
|
|
||||||
@@ -230,11 +230,11 @@ def create_embedding_server_thread(
|
|||||||
device = torch.device("cpu")
|
device = torch.device("cpu")
|
||||||
logger.info("Using CPU device")
|
logger.info("Using CPU device")
|
||||||
|
|
||||||
# 加载模型
|
# Load model
|
||||||
logger.info(f"Loading model {model_name}")
|
logger.info(f"Loading model {model_name}")
|
||||||
model = AutoModel.from_pretrained(model_name).to(device).eval()
|
model = AutoModel.from_pretrained(model_name).to(device).eval()
|
||||||
|
|
||||||
# 优化模型
|
# Optimize model
|
||||||
if cuda_available or mps_available:
|
if cuda_available or mps_available:
|
||||||
try:
|
try:
|
||||||
model = model.half()
|
model = model.half()
|
||||||
@@ -324,7 +324,7 @@ def create_embedding_server_thread(
|
|||||||
print(f"Error during Protobuf ZMQ warmup: {e}")
|
print(f"Error during Protobuf ZMQ warmup: {e}")
|
||||||
|
|
||||||
class DeviceTimer:
|
class DeviceTimer:
|
||||||
"""设备计时器"""
|
"""Device timer"""
|
||||||
def __init__(self, name="", device=device):
|
def __init__(self, name="", device=device):
|
||||||
self.name = name
|
self.name = name
|
||||||
self.device = device
|
self.device = device
|
||||||
@@ -369,60 +369,63 @@ def create_embedding_server_thread(
|
|||||||
return self.end_time - self.start_time
|
return self.end_time - self.start_time
|
||||||
|
|
||||||
def print_elapsed(self):
|
def print_elapsed(self):
|
||||||
print(f"Time taken for {self.name}: {self.elapsed_time():.6f} seconds")
|
elapsed = self.elapsed_time()
|
||||||
|
print(f"[{self.name}] Elapsed time: {elapsed:.3f}s")
|
||||||
|
|
||||||
def process_batch_pytorch(texts_batch, ids_batch, missing_ids):
|
def process_batch_pytorch(texts_batch, ids_batch, missing_ids):
|
||||||
"""处理文本批次"""
|
"""Process text batch"""
|
||||||
batch_size = len(texts_batch)
|
if not texts_batch:
|
||||||
logger.info(f"Processing batch of size {batch_size}")
|
return np.array([])
|
||||||
|
|
||||||
tokenize_timer = DeviceTimer("tokenization (batch)", device)
|
# Filter out empty texts and their corresponding IDs
|
||||||
to_device_timer = DeviceTimer("transfer to device (batch)", device)
|
valid_texts = []
|
||||||
embed_timer = DeviceTimer("embedding (batch)", device)
|
valid_ids = []
|
||||||
pool_timer = DeviceTimer("mean pooling (batch)", device)
|
for i, text in enumerate(texts_batch):
|
||||||
|
if text.strip(): # Only include non-empty texts
|
||||||
|
valid_texts.append(text)
|
||||||
|
valid_ids.append(ids_batch[i])
|
||||||
|
|
||||||
with tokenize_timer.timing():
|
if not valid_texts:
|
||||||
encoded_batch = tokenizer.batch_encode_plus(
|
print("WARNING: No valid texts in batch")
|
||||||
texts_batch,
|
return np.array([])
|
||||||
padding="max_length",
|
|
||||||
|
# Tokenize
|
||||||
|
token_timer = DeviceTimer("tokenization")
|
||||||
|
with token_timer.timing():
|
||||||
|
inputs = tokenizer(
|
||||||
|
valid_texts,
|
||||||
|
padding=True,
|
||||||
truncation=True,
|
truncation=True,
|
||||||
max_length=256,
|
max_length=512,
|
||||||
return_tensors="pt",
|
return_tensors="pt"
|
||||||
return_token_type_ids=False,
|
).to(device)
|
||||||
)
|
|
||||||
tokenize_timer.print_elapsed()
|
|
||||||
|
|
||||||
seq_length = encoded_batch["input_ids"].size(1)
|
# Compute embeddings
|
||||||
print(f"Batch size: {batch_size}, Sequence length: {seq_length}")
|
embed_timer = DeviceTimer("embedding computation")
|
||||||
|
with embed_timer.timing():
|
||||||
|
with torch.no_grad():
|
||||||
|
outputs = model(**inputs)
|
||||||
|
hidden_states = outputs.last_hidden_state
|
||||||
|
|
||||||
with to_device_timer.timing():
|
# Mean pooling
|
||||||
enc = {k: v.to(device) for k, v in encoded_batch.items()}
|
attention_mask = inputs['attention_mask']
|
||||||
to_device_timer.print_elapsed()
|
mask_expanded = attention_mask.unsqueeze(-1).expand(hidden_states.size()).float()
|
||||||
|
|
||||||
with torch.no_grad():
|
|
||||||
with embed_timer.timing():
|
|
||||||
out = model(enc["input_ids"], enc["attention_mask"])
|
|
||||||
embed_timer.print_elapsed()
|
|
||||||
|
|
||||||
with pool_timer.timing():
|
|
||||||
hidden_states = out.last_hidden_state if hasattr(out, "last_hidden_state") else out
|
|
||||||
mask_expanded = enc["attention_mask"].unsqueeze(-1).expand(hidden_states.size()).float()
|
|
||||||
sum_embeddings = torch.sum(hidden_states * mask_expanded, 1)
|
sum_embeddings = torch.sum(hidden_states * mask_expanded, 1)
|
||||||
sum_mask = torch.clamp(mask_expanded.sum(1), min=1e-9)
|
sum_mask = torch.clamp(mask_expanded.sum(1), min=1e-9)
|
||||||
batch_embeddings = sum_embeddings / sum_mask
|
batch_embeddings = sum_embeddings / sum_mask
|
||||||
pool_timer.print_elapsed()
|
embed_timer.print_elapsed()
|
||||||
|
|
||||||
return batch_embeddings.cpu().numpy()
|
return batch_embeddings.cpu().numpy()
|
||||||
|
|
||||||
# ZMQ server 主循环 - 修改为REP套接字
|
# ZMQ server main loop - modified to use REP socket
|
||||||
context = zmq.Context()
|
context = zmq.Context()
|
||||||
socket = context.socket(zmq.ROUTER) # 改为REP套接字
|
socket = context.socket(zmq.ROUTER) # Changed to REP socket
|
||||||
socket.bind(f"tcp://127.0.0.1:{zmq_port}")
|
socket.bind(f"tcp://127.0.0.1:{zmq_port}")
|
||||||
print(f"INFO: ZMQ ROUTER server listening on port {zmq_port}")
|
print(f"INFO: ZMQ ROUTER server listening on port {zmq_port}")
|
||||||
|
|
||||||
# 设置超时
|
# Set timeouts
|
||||||
socket.setsockopt(zmq.RCVTIMEO, 5000) # 5秒接收超时
|
socket.setsockopt(zmq.RCVTIMEO, 5000) # 5 second receive timeout
|
||||||
socket.setsockopt(zmq.SNDTIMEO, 300000) # 300秒发送超时
|
socket.setsockopt(zmq.SNDTIMEO, 300000) # 300 second send timeout
|
||||||
|
|
||||||
from . import embedding_pb2
|
from . import embedding_pb2
|
||||||
|
|
||||||
@@ -442,18 +445,18 @@ def create_embedding_server_thread(
|
|||||||
try:
|
try:
|
||||||
parts = socket.recv_multipart()
|
parts = socket.recv_multipart()
|
||||||
|
|
||||||
# --- 恢复稳健的消息格式判断 ---
|
# --- Restore robust message format detection ---
|
||||||
# 必须检查 parts 的长度,避免 IndexError
|
# Must check parts length to avoid IndexError
|
||||||
if len(parts) >= 3:
|
if len(parts) >= 3:
|
||||||
identity = parts[0]
|
identity = parts[0]
|
||||||
# empty = parts[1] # 中间的空帧我们通常不关心
|
# empty = parts[1] # We usually don't care about the middle empty frame
|
||||||
message = parts[2]
|
message = parts[2]
|
||||||
elif len(parts) == 2:
|
elif len(parts) == 2:
|
||||||
# 也能处理没有空帧的情况
|
# Can also handle cases without empty frame
|
||||||
identity = parts[0]
|
identity = parts[0]
|
||||||
message = parts[1]
|
message = parts[1]
|
||||||
else:
|
else:
|
||||||
# 如果收到格式错误的消息,打印警告并忽略它,而不是崩溃
|
# If received message format is wrong, print warning and ignore it instead of crashing
|
||||||
print(f"WARNING: Received unexpected message format with {len(parts)} parts. Ignoring.")
|
print(f"WARNING: Received unexpected message format with {len(parts)} parts. Ignoring.")
|
||||||
continue
|
continue
|
||||||
print(f"INFO: Received ZMQ request from client {identity.hex()[:8]}, size {len(message)} bytes")
|
print(f"INFO: Received ZMQ request from client {identity.hex()[:8]}, size {len(message)} bytes")
|
||||||
@@ -555,17 +558,17 @@ def create_embedding_server_thread(
|
|||||||
e2e_start = time.time()
|
e2e_start = time.time()
|
||||||
lookup_timer = DeviceTimer("text lookup")
|
lookup_timer = DeviceTimer("text lookup")
|
||||||
|
|
||||||
# 解析请求
|
# Parse request
|
||||||
req_proto = embedding_pb2.NodeEmbeddingRequest()
|
req_proto = embedding_pb2.NodeEmbeddingRequest()
|
||||||
req_proto.ParseFromString(message)
|
req_proto.ParseFromString(message)
|
||||||
node_ids = req_proto.node_ids
|
node_ids = req_proto.node_ids
|
||||||
print(f"INFO: Request for {len(node_ids)} node embeddings: {list(node_ids)}")
|
print(f"INFO: Request for {len(node_ids)} node embeddings: {list(node_ids)}")
|
||||||
|
|
||||||
# 添加调试信息
|
# Add debug information
|
||||||
if len(node_ids) > 0:
|
if len(node_ids) > 0:
|
||||||
print(f"DEBUG: Node ID range: {min(node_ids)} to {max(node_ids)}")
|
print(f"DEBUG: Node ID range: {min(node_ids)} to {max(node_ids)}")
|
||||||
|
|
||||||
# 查找文本
|
# Look up texts
|
||||||
texts = []
|
texts = []
|
||||||
missing_ids = []
|
missing_ids = []
|
||||||
with lookup_timer.timing():
|
with lookup_timer.timing():
|
||||||
@@ -575,8 +578,8 @@ def create_embedding_server_thread(
|
|||||||
if txt:
|
if txt:
|
||||||
texts.append(txt)
|
texts.append(txt)
|
||||||
else:
|
else:
|
||||||
# 如果文本为空,我们仍然需要一个占位符来进行批处理,
|
# If text is empty, we still need a placeholder for batch processing,
|
||||||
# 但将其ID记录为缺失
|
# but record its ID as missing
|
||||||
texts.append("")
|
texts.append("")
|
||||||
missing_ids.append(nid)
|
missing_ids.append(nid)
|
||||||
lookup_timer.print_elapsed()
|
lookup_timer.print_elapsed()
|
||||||
@@ -584,7 +587,7 @@ def create_embedding_server_thread(
|
|||||||
if missing_ids:
|
if missing_ids:
|
||||||
print(f"WARNING: Missing passages for IDs: {missing_ids}")
|
print(f"WARNING: Missing passages for IDs: {missing_ids}")
|
||||||
|
|
||||||
# 处理批次
|
# Process batch
|
||||||
total_size = len(texts)
|
total_size = len(texts)
|
||||||
print(f"INFO: Total batch size: {total_size}, max_batch_size: {max_batch_size}")
|
print(f"INFO: Total batch size: {total_size}, max_batch_size: {max_batch_size}")
|
||||||
|
|
||||||
@@ -623,7 +626,7 @@ def create_embedding_server_thread(
|
|||||||
else: # sentence-transformers
|
else: # sentence-transformers
|
||||||
hidden = process_batch_pytorch(texts, node_ids, missing_ids)
|
hidden = process_batch_pytorch(texts, node_ids, missing_ids)
|
||||||
|
|
||||||
# 序列化响应
|
# Serialize response
|
||||||
ser_start = time.time()
|
ser_start = time.time()
|
||||||
|
|
||||||
resp_proto = embedding_pb2.NodeEmbeddingResponse()
|
resp_proto = embedding_pb2.NodeEmbeddingResponse()
|
||||||
@@ -635,7 +638,7 @@ def create_embedding_server_thread(
|
|||||||
|
|
||||||
response_data = resp_proto.SerializeToString()
|
response_data = resp_proto.SerializeToString()
|
||||||
|
|
||||||
# REP 套接字发送单个响应
|
# REP socket sends a single response
|
||||||
socket.send_multipart([identity, b'', response_data])
|
socket.send_multipart([identity, b'', response_data])
|
||||||
|
|
||||||
ser_end = time.time()
|
ser_end = time.time()
|
||||||
@@ -656,11 +659,11 @@ def create_embedding_server_thread(
|
|||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"ERROR: Error in ZMQ server: {e}")
|
print(f"ERROR: Error in ZMQ server: {e}")
|
||||||
try:
|
try:
|
||||||
# 发送空响应以维持REQ-REP状态
|
# Send empty response to maintain REQ-REP state
|
||||||
empty_resp = embedding_pb2.NodeEmbeddingResponse()
|
empty_resp = embedding_pb2.NodeEmbeddingResponse()
|
||||||
socket.send(empty_resp.SerializeToString())
|
socket.send(empty_resp.SerializeToString())
|
||||||
except:
|
except:
|
||||||
# 如果发送失败,重新创建socket
|
# If sending fails, recreate socket
|
||||||
socket.close()
|
socket.close()
|
||||||
socket = context.socket(zmq.REP)
|
socket = context.socket(zmq.REP)
|
||||||
socket.bind(f"tcp://127.0.0.1:{zmq_port}")
|
socket.bind(f"tcp://127.0.0.1:{zmq_port}")
|
||||||
|
|||||||
@@ -23,7 +23,7 @@ g++ ./demo_reader.cpp -o ./demo_reader && ./demo_reader --stats \
|
|||||||
f.read(reinterpret_cast<char *>(&val), sizeof(uint32_t))
|
f.read(reinterpret_cast<char *>(&val), sizeof(uint32_t))
|
||||||
#define SECTOR_SIZE 4096
|
#define SECTOR_SIZE 4096
|
||||||
|
|
||||||
// 辅助:获取文件大小
|
// Helper: Get file size
|
||||||
static size_t get_file_size(const std::string &fname) {
|
static size_t get_file_size(const std::string &fname) {
|
||||||
std::ifstream ifs(fname, std::ios::binary | std::ios::ate);
|
std::ifstream ifs(fname, std::ios::binary | std::ios::ate);
|
||||||
if (ifs.fail() || !ifs.is_open()) {
|
if (ifs.fail() || !ifs.is_open()) {
|
||||||
@@ -32,7 +32,7 @@ static size_t get_file_size(const std::string &fname) {
|
|||||||
return static_cast<size_t>(ifs.tellg());
|
return static_cast<size_t>(ifs.tellg());
|
||||||
}
|
}
|
||||||
|
|
||||||
// 打印 sector 的前若干 hex,用于debug
|
// Print first few hex of sector for debug
|
||||||
static void print_hex(const char *buf, size_t len, size_t max_len = 64) {
|
static void print_hex(const char *buf, size_t len, size_t max_len = 64) {
|
||||||
size_t show_len = (len < max_len) ? len : max_len;
|
size_t show_len = (len < max_len) ? len : max_len;
|
||||||
for (size_t i = 0; i < show_len; i++) {
|
for (size_t i = 0; i < show_len; i++) {
|
||||||
@@ -46,19 +46,19 @@ static void print_hex(const char *buf, size_t len, size_t max_len = 64) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
修正后的 demo_reader:
|
Corrected demo_reader:
|
||||||
1) 从 partition.bin 读:
|
1) Read from partition.bin:
|
||||||
- C, partition_nums, nd
|
- C, partition_nums, nd
|
||||||
- graph_partitions[i]: 分区 i 的所有 nodeID
|
- graph_partitions[i]: all nodeIDs in partition i
|
||||||
- id2partition[nodeID]: nodeID => partition i
|
- id2partition[nodeID]: nodeID => partition i
|
||||||
2) 从 _disk_graph.index 读:
|
2) Read from _disk_graph.index:
|
||||||
a) sector0 里先有 2个 int: meta_n, meta_dim
|
a) sector0 first has 2 ints: meta_n, meta_dim
|
||||||
b) 再有 meta_n个 uint64_t
|
b) then meta_n uint64_t
|
||||||
例如: [0]=nd, [1]=dim, [2]=??, [3]=max_node_len, [4]=C, [5]..??,
|
e.g.: [0]=nd, [1]=dim, [2]=??, [3]=max_node_len, [4]=C, [5]..??,
|
||||||
[8]=file_size... 具体位置要结合 relayout 的写法 c) graph_node_len =
|
[8]=file_size... specific positions need to be combined with relayout writing c) graph_node_len =
|
||||||
max_node_len - dim_in_meta*sizeof(float) 3) 用户给定 target_node_id =>
|
max_node_len - dim_in_meta*sizeof(float) 3) User given target_node_id =>
|
||||||
partition_id= id2partition[node_id]
|
partition_id= id2partition[node_id]
|
||||||
在 graph_partitions[partition_id] 里找 node 的下标 j
|
find node index j in graph_partitions[partition_id]
|
||||||
offset = (partition_id+1)*4096 => sector
|
offset = (partition_id+1)*4096 => sector
|
||||||
adjacency_offset= j*graph_node_len => neighbor_count => neighbors
|
adjacency_offset= j*graph_node_len => neighbor_count => neighbors
|
||||||
*/
|
*/
|
||||||
@@ -105,7 +105,7 @@ int main(int argc, char **argv) {
|
|||||||
<< "\n";
|
<< "\n";
|
||||||
}
|
}
|
||||||
|
|
||||||
// 1) 读取 partition.bin
|
// 1) Read partition.bin
|
||||||
std::ifstream pf(partition_bin, std::ios::binary);
|
std::ifstream pf(partition_bin, std::ios::binary);
|
||||||
if (!pf.is_open()) {
|
if (!pf.is_open()) {
|
||||||
std::cerr << "Cannot open partition.bin: " << partition_bin << std::endl;
|
std::cerr << "Cannot open partition.bin: " << partition_bin << std::endl;
|
||||||
@@ -119,8 +119,8 @@ int main(int argc, char **argv) {
|
|||||||
<< ", partition_nums=" << partition_nums << ", nd=" << nd
|
<< ", partition_nums=" << partition_nums << ", nd=" << nd
|
||||||
<< std::endl;
|
<< std::endl;
|
||||||
|
|
||||||
// 读取分区节点列表
|
// Read partition node lists
|
||||||
std::vector<std::vector<uint32_t>> graph_partitions(partition_nums);
|
std::vector<std::vector<uint32_t> > graph_partitions(partition_nums);
|
||||||
for (uint64_t i = 0; i < partition_nums; i++) {
|
for (uint64_t i = 0; i < partition_nums; i++) {
|
||||||
uint32_t psize;
|
uint32_t psize;
|
||||||
READ_U32(pf, psize);
|
READ_U32(pf, psize);
|
||||||
@@ -128,7 +128,7 @@ int main(int argc, char **argv) {
|
|||||||
pf.read(reinterpret_cast<char *>(graph_partitions[i].data()),
|
pf.read(reinterpret_cast<char *>(graph_partitions[i].data()),
|
||||||
psize * sizeof(uint32_t));
|
psize * sizeof(uint32_t));
|
||||||
}
|
}
|
||||||
// 读取 _id2partition[node], 大小= nd
|
// Read _id2partition[node], size= nd
|
||||||
std::vector<uint32_t> id2partition(nd);
|
std::vector<uint32_t> id2partition(nd);
|
||||||
pf.read(reinterpret_cast<char *>(id2partition.data()), nd * sizeof(uint32_t));
|
pf.read(reinterpret_cast<char *>(id2partition.data()), nd * sizeof(uint32_t));
|
||||||
pf.close();
|
pf.close();
|
||||||
@@ -140,23 +140,23 @@ int main(int argc, char **argv) {
|
|||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
// 2) 解析 _disk_graph.index
|
// 2) Parse _disk_graph.index
|
||||||
std::ifstream gf(graph_index, std::ios::binary);
|
std::ifstream gf(graph_index, std::ios::binary);
|
||||||
if (!gf.is_open()) {
|
if (!gf.is_open()) {
|
||||||
std::cerr << "Cannot open disk_graph.index: " << graph_index << std::endl;
|
std::cerr << "Cannot open disk_graph.index: " << graph_index << std::endl;
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
// (a) sector0 => 先读 2个 int
|
// (a) sector0 => first read 2 ints
|
||||||
int meta_n, meta_dim;
|
int meta_n, meta_dim;
|
||||||
gf.read((char *)&meta_n, sizeof(int));
|
gf.read((char *)&meta_n, sizeof(int));
|
||||||
gf.read((char *)&meta_dim, sizeof(int));
|
gf.read((char *)&meta_dim, sizeof(int));
|
||||||
std::cout << "[debug] meta_n=" << meta_n << ", meta_dim=" << meta_dim << "\n";
|
std::cout << "[debug] meta_n=" << meta_n << ", meta_dim=" << meta_dim << "\n";
|
||||||
|
|
||||||
// (b) 读 meta_n个 uint64_t
|
// (b) Read meta_n uint64_t
|
||||||
std::vector<uint64_t> meta_info(meta_n);
|
std::vector<uint64_t> meta_info(meta_n);
|
||||||
gf.read(reinterpret_cast<char *>(meta_info.data()),
|
gf.read(reinterpret_cast<char *>(meta_info.data()),
|
||||||
meta_n * sizeof(uint64_t));
|
meta_n * sizeof(uint64_t));
|
||||||
// 打印
|
// Print
|
||||||
for (int i = 0; i < meta_n; i++) {
|
for (int i = 0; i < meta_n; i++) {
|
||||||
std::cout << " meta_info[" << i << "]= " << meta_info[i] << "\n";
|
std::cout << " meta_info[" << i << "]= " << meta_info[i] << "\n";
|
||||||
}
|
}
|
||||||
@@ -164,11 +164,11 @@ int main(int argc, char **argv) {
|
|||||||
size_t file_size = get_file_size(graph_index);
|
size_t file_size = get_file_size(graph_index);
|
||||||
std::cout << "[disk_graph.index size] " << file_size << " bytes\n";
|
std::cout << "[disk_graph.index size] " << file_size << " bytes\n";
|
||||||
|
|
||||||
// **根据 relayout log** 你说: meta_info[0]=nd=60450220, meta_info[1]=dim=769,
|
// **According to relayout log** you said: meta_info[0]=nd=60450220, meta_info[1]=dim=769,
|
||||||
// meta_info[2]=??(16495248?), meta_info[3]=max_node_len=3320,
|
// meta_info[2]=??(16495248?), meta_info[3]=max_node_len=3320,
|
||||||
// meta_info[4]=16 (C),
|
// meta_info[4]=16 (C),
|
||||||
// meta_info[8]= 15475261440(文件大小)
|
// meta_info[8]= 15475261440(file size)
|
||||||
// 我们这里先手动解析:
|
// We manually parse here first:
|
||||||
uint64_t nd_in_meta = meta_info[0];
|
uint64_t nd_in_meta = meta_info[0];
|
||||||
uint64_t dim_in_meta = meta_info[1];
|
uint64_t dim_in_meta = meta_info[1];
|
||||||
uint64_t max_node_len = meta_info[3];
|
uint64_t max_node_len = meta_info[3];
|
||||||
@@ -182,7 +182,7 @@ int main(int argc, char **argv) {
|
|||||||
<< ", c_in_meta= " << c_in_meta
|
<< ", c_in_meta= " << c_in_meta
|
||||||
<< ", entire_file_size= " << entire_file_sz << "\n";
|
<< ", entire_file_size= " << entire_file_sz << "\n";
|
||||||
|
|
||||||
// 计算 graph_node_len
|
// Calculate graph_node_len
|
||||||
uint64_t dim_size = dim_in_meta * sizeof(float);
|
uint64_t dim_size = dim_in_meta * sizeof(float);
|
||||||
uint64_t graph_node_len = max_node_len - dim_size;
|
uint64_t graph_node_len = max_node_len - dim_size;
|
||||||
std::cout << " => graph_node_len= " << graph_node_len << "\n\n";
|
std::cout << " => graph_node_len= " << graph_node_len << "\n\n";
|
||||||
@@ -305,7 +305,7 @@ int main(int argc, char **argv) {
|
|||||||
// Error check pf_again if needed
|
// Error check pf_again if needed
|
||||||
}
|
}
|
||||||
|
|
||||||
// 3) 找 target_node_id => partition_id => subIndex
|
// 3) Find target_node_id => partition_id => subIndex
|
||||||
uint32_t partition_id = id2partition[target_node_id];
|
uint32_t partition_id = id2partition[target_node_id];
|
||||||
if (partition_id >= partition_nums) {
|
if (partition_id >= partition_nums) {
|
||||||
std::cerr << "Partition ID out-of-range for target node.\n";
|
std::cerr << "Partition ID out-of-range for target node.\n";
|
||||||
|
|||||||
Reference in New Issue
Block a user