Datastore reproduce (#3)
* fix: diskann zmq port and passages * feat: auto discovery of packages and fix passage gen for diskann * docs: embedding pruning * refactor: passage structure * feat: reproducible research datas, rpj_wiki & dpr * refactor: chat and base searcher * feat: chat on mps
This commit is contained in:
@@ -3,29 +3,25 @@ import os
|
||||
import json
|
||||
import struct
|
||||
from pathlib import Path
|
||||
from typing import Dict, Any
|
||||
from typing import Dict, Any, List
|
||||
import contextlib
|
||||
import threading
|
||||
import time
|
||||
import atexit
|
||||
import socket
|
||||
import subprocess
|
||||
import sys
|
||||
import pickle
|
||||
|
||||
from leann.embedding_server_manager import EmbeddingServerManager
|
||||
from leann.searcher_base import BaseSearcher
|
||||
from leann.registry import register_backend
|
||||
from leann.interface import (
|
||||
LeannBackendFactoryInterface,
|
||||
LeannBackendBuilderInterface,
|
||||
LeannBackendSearcherInterface
|
||||
)
|
||||
from . import _diskannpy as diskannpy
|
||||
|
||||
METRIC_MAP = {
|
||||
"mips": diskannpy.Metric.INNER_PRODUCT,
|
||||
"l2": diskannpy.Metric.L2,
|
||||
"cosine": diskannpy.Metric.COSINE,
|
||||
}
|
||||
def _get_diskann_metrics():
|
||||
from . import _diskannpy as diskannpy
|
||||
return {
|
||||
"mips": diskannpy.Metric.INNER_PRODUCT,
|
||||
"l2": diskannpy.Metric.L2,
|
||||
"cosine": diskannpy.Metric.COSINE,
|
||||
}
|
||||
|
||||
@contextlib.contextmanager
|
||||
def chdir(path):
|
||||
@@ -51,210 +47,87 @@ class DiskannBackend(LeannBackendFactoryInterface):
|
||||
|
||||
@staticmethod
|
||||
def searcher(index_path: str, **kwargs) -> LeannBackendSearcherInterface:
|
||||
path = Path(index_path)
|
||||
meta_path = path.parent / f"{path.name}.meta.json"
|
||||
if not meta_path.exists():
|
||||
raise FileNotFoundError(f"Leann metadata file not found at {meta_path}.")
|
||||
|
||||
with open(meta_path, 'r') as f:
|
||||
meta = json.load(f)
|
||||
|
||||
# Pass essential metadata to the searcher
|
||||
kwargs['meta'] = meta
|
||||
return DiskannSearcher(index_path, **kwargs)
|
||||
|
||||
class DiskannBuilder(LeannBackendBuilderInterface):
|
||||
def __init__(self, **kwargs):
|
||||
self.build_params = kwargs
|
||||
|
||||
def _generate_passages_file(self, index_dir: Path, index_prefix: str, **kwargs):
|
||||
"""Generate passages file for recompute mode, mirroring HNSW backend."""
|
||||
try:
|
||||
chunks = kwargs.get('chunks', [])
|
||||
if not chunks:
|
||||
print("INFO: No chunks data provided, skipping passages file generation for DiskANN.")
|
||||
return
|
||||
|
||||
passages_data = {str(node_id): chunk["text"] for node_id, chunk in enumerate(chunks)}
|
||||
|
||||
passages_file = index_dir / f"{index_prefix}.passages.json"
|
||||
with open(passages_file, 'w', encoding='utf-8') as f:
|
||||
json.dump(passages_data, f, ensure_ascii=False, indent=2)
|
||||
|
||||
print(f"✅ Generated passages file for recompute mode at '{passages_file}' ({len(passages_data)} passages)")
|
||||
|
||||
except Exception as e:
|
||||
print(f"💥 ERROR: Failed to generate passages file for DiskANN. Exception: {e}")
|
||||
pass
|
||||
|
||||
def build(self, data: np.ndarray, index_path: str, **kwargs):
|
||||
def build(self, data: np.ndarray, ids: List[str], index_path: str, **kwargs):
|
||||
path = Path(index_path)
|
||||
index_dir = path.parent
|
||||
index_prefix = path.stem
|
||||
|
||||
index_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if data.dtype != np.float32:
|
||||
data = data.astype(np.float32)
|
||||
if not data.flags['C_CONTIGUOUS']:
|
||||
data = np.ascontiguousarray(data)
|
||||
|
||||
|
||||
data_filename = f"{index_prefix}_data.bin"
|
||||
_write_vectors_to_bin(data, index_dir / data_filename)
|
||||
|
||||
label_map = {i: str_id for i, str_id in enumerate(ids)}
|
||||
label_map_file = index_dir / "leann.labels.map"
|
||||
with open(label_map_file, 'wb') as f:
|
||||
pickle.dump(label_map, f)
|
||||
|
||||
build_kwargs = {**self.build_params, **kwargs}
|
||||
metric_str = build_kwargs.get("distance_metric", "mips").lower()
|
||||
metric_enum = METRIC_MAP.get(metric_str)
|
||||
metric_enum = _get_diskann_metrics().get(build_kwargs.get("distance_metric", "mips").lower())
|
||||
if metric_enum is None:
|
||||
raise ValueError(f"Unsupported distance_metric '{metric_str}'.")
|
||||
raise ValueError(f"Unsupported distance_metric.")
|
||||
|
||||
complexity = build_kwargs.get("complexity", 64)
|
||||
graph_degree = build_kwargs.get("graph_degree", 32)
|
||||
final_index_ram_limit = build_kwargs.get("search_memory_maximum", 4.0)
|
||||
indexing_ram_budget = build_kwargs.get("build_memory_maximum", 8.0)
|
||||
num_threads = build_kwargs.get("num_threads", 8)
|
||||
pq_disk_bytes = build_kwargs.get("pq_disk_bytes", 0)
|
||||
codebook_prefix = ""
|
||||
is_recompute = build_kwargs.get("is_recompute", False)
|
||||
|
||||
print(f"INFO: Building DiskANN index for {data.shape[0]} vectors with metric {metric_enum}...")
|
||||
|
||||
try:
|
||||
from . import _diskannpy as diskannpy
|
||||
with chdir(index_dir):
|
||||
diskannpy.build_disk_float_index(
|
||||
metric_enum,
|
||||
data_filename,
|
||||
index_prefix,
|
||||
complexity,
|
||||
graph_degree,
|
||||
final_index_ram_limit,
|
||||
indexing_ram_budget,
|
||||
num_threads,
|
||||
pq_disk_bytes,
|
||||
codebook_prefix
|
||||
metric_enum, data_filename, index_prefix,
|
||||
build_kwargs.get("complexity", 64), build_kwargs.get("graph_degree", 32),
|
||||
build_kwargs.get("search_memory_maximum", 4.0), build_kwargs.get("build_memory_maximum", 8.0),
|
||||
build_kwargs.get("num_threads", 8), build_kwargs.get("pq_disk_bytes", 0), ""
|
||||
)
|
||||
print(f"✅ DiskANN index built successfully at '{index_dir / index_prefix}'")
|
||||
if is_recompute:
|
||||
self._generate_passages_file(index_dir, index_prefix, **build_kwargs)
|
||||
except Exception as e:
|
||||
print(f"💥 ERROR: DiskANN index build failed. Exception: {e}")
|
||||
raise
|
||||
finally:
|
||||
temp_data_file = index_dir / data_filename
|
||||
if temp_data_file.exists():
|
||||
os.remove(temp_data_file)
|
||||
|
||||
class DiskannSearcher(LeannBackendSearcherInterface):
|
||||
class DiskannSearcher(BaseSearcher):
|
||||
def __init__(self, index_path: str, **kwargs):
|
||||
self.meta = kwargs.get("meta", {})
|
||||
if not self.meta:
|
||||
raise ValueError("DiskannSearcher requires metadata from .meta.json.")
|
||||
super().__init__(index_path, backend_module_name="leann_backend_diskann.embedding_server", **kwargs)
|
||||
from . import _diskannpy as diskannpy
|
||||
|
||||
dimensions = self.meta.get("dimensions")
|
||||
if not dimensions:
|
||||
raise ValueError("Dimensions not found in Leann metadata.")
|
||||
|
||||
self.distance_metric = self.meta.get("distance_metric", "mips").lower()
|
||||
metric_enum = METRIC_MAP.get(self.distance_metric)
|
||||
distance_metric = kwargs.get("distance_metric", "mips").lower()
|
||||
metric_enum = _get_diskann_metrics().get(distance_metric)
|
||||
if metric_enum is None:
|
||||
raise ValueError(f"Unsupported distance_metric '{self.distance_metric}'.")
|
||||
raise ValueError(f"Unsupported distance_metric '{distance_metric}'.")
|
||||
|
||||
self.embedding_model = self.meta.get("embedding_model")
|
||||
if not self.embedding_model:
|
||||
print("WARNING: embedding_model not found in meta.json. Recompute will fail if attempted.")
|
||||
|
||||
path = Path(index_path)
|
||||
self.index_dir = path.parent
|
||||
self.index_prefix = path.stem
|
||||
|
||||
num_threads = kwargs.get("num_threads", 8)
|
||||
num_nodes_to_cache = kwargs.get("num_nodes_to_cache", 0)
|
||||
self.num_threads = kwargs.get("num_threads", 8)
|
||||
self.zmq_port = kwargs.get("zmq_port", 6666)
|
||||
|
||||
try:
|
||||
full_index_prefix = str(self.index_dir / self.index_prefix)
|
||||
self._index = diskannpy.StaticDiskFloatIndex(
|
||||
metric_enum, full_index_prefix, num_threads, num_nodes_to_cache, 1, self.zmq_port, "", ""
|
||||
)
|
||||
self.num_threads = num_threads
|
||||
self.embedding_server_manager = EmbeddingServerManager(
|
||||
backend_module_name="leann_backend_diskann.embedding_server"
|
||||
)
|
||||
print("✅ DiskANN index loaded successfully.")
|
||||
except Exception as e:
|
||||
print(f"💥 ERROR: Failed to load DiskANN index. Exception: {e}")
|
||||
raise
|
||||
|
||||
full_index_prefix = str(self.index_dir / self.index_path.stem)
|
||||
self._index = diskannpy.StaticDiskFloatIndex(
|
||||
metric_enum, full_index_prefix, self.num_threads,
|
||||
kwargs.get("num_nodes_to_cache", 0), 1, self.zmq_port, "", ""
|
||||
)
|
||||
|
||||
def search(self, query: np.ndarray, top_k: int, **kwargs) -> Dict[str, Any]:
|
||||
complexity = kwargs.get("complexity", 256)
|
||||
beam_width = kwargs.get("beam_width", 4)
|
||||
|
||||
USE_DEFERRED_FETCH = kwargs.get("USE_DEFERRED_FETCH", False)
|
||||
skip_search_reorder = kwargs.get("skip_search_reorder", False)
|
||||
recompute_beighbor_embeddings = kwargs.get("recompute_beighbor_embeddings", False)
|
||||
dedup_node_dis = kwargs.get("dedup_node_dis", False)
|
||||
prune_ratio = kwargs.get("prune_ratio", 0.0)
|
||||
batch_recompute = kwargs.get("batch_recompute", False)
|
||||
global_pruning = kwargs.get("global_pruning", False)
|
||||
port = kwargs.get("zmq_port", self.zmq_port)
|
||||
|
||||
if recompute_beighbor_embeddings:
|
||||
print(f"INFO: DiskANN ZMQ mode enabled - ensuring embedding server is running")
|
||||
if not self.embedding_model:
|
||||
raise ValueError("Cannot use recompute_beighbor_embeddings without 'embedding_model' in meta.json.")
|
||||
recompute = kwargs.get("recompute_beighbor_embeddings", False)
|
||||
if recompute:
|
||||
meta_file_path = self.index_dir / f"{self.index_path.name}.meta.json"
|
||||
if not meta_file_path.exists():
|
||||
raise RuntimeError(f"FATAL: Recompute mode enabled but metadata file not found: {meta_file_path}")
|
||||
zmq_port = kwargs.get("zmq_port", self.zmq_port)
|
||||
self._ensure_server_running(str(meta_file_path), port=zmq_port, **kwargs)
|
||||
|
||||
passages_file = kwargs.get("passages_file")
|
||||
if not passages_file:
|
||||
potential_passages_file = self.index_dir / f"{self.index_prefix}.passages.json"
|
||||
if potential_passages_file.exists():
|
||||
passages_file = str(potential_passages_file)
|
||||
print(f"INFO: Automatically found passages file: {passages_file}")
|
||||
|
||||
if not passages_file:
|
||||
raise RuntimeError(
|
||||
f"Recompute mode is enabled, but no passages file was found. "
|
||||
f"A '{self.index_prefix}.passages.json' file should exist in the index directory "
|
||||
f"'{self.index_dir}'. Ensure you build the index with 'recompute=True'."
|
||||
)
|
||||
|
||||
server_started = self.embedding_server_manager.start_server(
|
||||
port=self.zmq_port,
|
||||
model_name=self.embedding_model,
|
||||
distance_metric=self.distance_metric,
|
||||
passages_file=passages_file
|
||||
)
|
||||
|
||||
if not server_started:
|
||||
raise RuntimeError(f"Failed to start DiskANN embedding server on port {self.zmq_port}")
|
||||
|
||||
if query.dtype != np.float32:
|
||||
query = query.astype(np.float32)
|
||||
if query.ndim == 1:
|
||||
query = np.expand_dims(query, axis=0)
|
||||
|
||||
try:
|
||||
labels, distances = self._index.batch_search(
|
||||
query,
|
||||
query.shape[0],
|
||||
top_k,
|
||||
complexity,
|
||||
beam_width,
|
||||
self.num_threads,
|
||||
USE_DEFERRED_FETCH,
|
||||
skip_search_reorder,
|
||||
recompute_beighbor_embeddings,
|
||||
dedup_node_dis,
|
||||
prune_ratio,
|
||||
batch_recompute,
|
||||
global_pruning
|
||||
)
|
||||
return {"labels": labels, "distances": distances}
|
||||
except Exception as e:
|
||||
print(f"💥 ERROR: DiskANN search failed. Exception: {e}")
|
||||
batch_size = query.shape[0]
|
||||
return {"labels": np.full((batch_size, top_k), -1, dtype=np.int64),
|
||||
"distances": np.full((batch_size, top_k), float('inf'), dtype=np.float32)}
|
||||
|
||||
def __del__(self):
|
||||
if hasattr(self, 'embedding_server_manager'):
|
||||
self.embedding_server_manager.stop_server()
|
||||
|
||||
labels, distances = self._index.batch_search(
|
||||
query, query.shape[0], top_k,
|
||||
kwargs.get("complexity", 256), kwargs.get("beam_width", 4), self.num_threads,
|
||||
kwargs.get("USE_DEFERRED_FETCH", False), kwargs.get("skip_search_reorder", False),
|
||||
recompute, kwargs.get("dedup_node_dis", False), kwargs.get("prune_ratio", 0.0),
|
||||
kwargs.get("batch_recompute", False), kwargs.get("global_pruning", False)
|
||||
)
|
||||
|
||||
string_labels = [[self.label_map.get(int_label, f"unknown_{int_label}") for int_label in batch_labels] for batch_labels in labels]
|
||||
|
||||
return {"labels": string_labels, "distances": distances}
|
||||
@@ -15,6 +15,8 @@ import os
|
||||
from contextlib import contextmanager
|
||||
import zmq
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
import pickle
|
||||
|
||||
RED = "\033[91m"
|
||||
RESET = "\033[0m"
|
||||
@@ -39,23 +41,113 @@ class SimplePassageLoader:
|
||||
def __len__(self) -> int:
|
||||
return len(self.passages_data)
|
||||
|
||||
def load_passages_from_file(passages_file: str) -> SimplePassageLoader:
|
||||
def load_passages_from_metadata(meta_file: str) -> SimplePassageLoader:
|
||||
"""
|
||||
Load passages from a JSON file
|
||||
Expected format: {"passage_id": "passage_text", ...}
|
||||
Load passages using metadata file with PassageManager for lazy loading
|
||||
"""
|
||||
if not os.path.exists(passages_file):
|
||||
print(f"Warning: Passages file {passages_file} not found. Using empty loader.")
|
||||
return SimplePassageLoader()
|
||||
# Load metadata to get passage sources
|
||||
with open(meta_file, 'r') as f:
|
||||
meta = json.load(f)
|
||||
|
||||
# Import PassageManager dynamically to avoid circular imports
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
# Find the leann package directory relative to this file
|
||||
current_dir = Path(__file__).parent
|
||||
leann_core_path = current_dir.parent.parent / "leann-core" / "src"
|
||||
sys.path.insert(0, str(leann_core_path))
|
||||
|
||||
try:
|
||||
with open(passages_file, 'r', encoding='utf-8') as f:
|
||||
passages_data = json.load(f)
|
||||
print(f"Loaded {len(passages_data)} passages from {passages_file}")
|
||||
return SimplePassageLoader(passages_data)
|
||||
except Exception as e:
|
||||
print(f"Error loading passages from {passages_file}: {e}")
|
||||
return SimplePassageLoader()
|
||||
from leann.api import PassageManager
|
||||
passage_manager = PassageManager(meta['passage_sources'])
|
||||
finally:
|
||||
sys.path.pop(0)
|
||||
|
||||
# Load label map
|
||||
passages_dir = Path(meta_file).parent
|
||||
label_map_file = passages_dir / "leann.labels.map"
|
||||
|
||||
if label_map_file.exists():
|
||||
import pickle
|
||||
with open(label_map_file, 'rb') as f:
|
||||
label_map = pickle.load(f)
|
||||
print(f"Loaded label map with {len(label_map)} entries")
|
||||
else:
|
||||
raise FileNotFoundError(f"Label map file not found: {label_map_file}")
|
||||
|
||||
print(f"Initialized lazy passage loading for {len(label_map)} passages")
|
||||
|
||||
class LazyPassageLoader(SimplePassageLoader):
|
||||
def __init__(self, passage_manager, label_map):
|
||||
self.passage_manager = passage_manager
|
||||
self.label_map = label_map
|
||||
# Initialize parent with empty data
|
||||
super().__init__({})
|
||||
|
||||
def __getitem__(self, passage_id: Union[str, int]) -> Dict[str, str]:
|
||||
"""Get passage by ID with lazy loading"""
|
||||
try:
|
||||
int_id = int(passage_id)
|
||||
if int_id in self.label_map:
|
||||
string_id = self.label_map[int_id]
|
||||
passage_data = self.passage_manager.get_passage(string_id)
|
||||
if passage_data and passage_data.get("text"):
|
||||
return {"text": passage_data["text"]}
|
||||
else:
|
||||
raise RuntimeError(f"FATAL: Empty text for ID {int_id} -> {string_id}")
|
||||
else:
|
||||
raise RuntimeError(f"FATAL: ID {int_id} not found in label_map")
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"FATAL: Exception getting passage {passage_id}: {e}")
|
||||
|
||||
def __len__(self) -> int:
|
||||
return len(self.label_map)
|
||||
|
||||
return LazyPassageLoader(passage_manager, label_map)
|
||||
|
||||
def load_passages_from_file(passages_file: str) -> SimplePassageLoader:
|
||||
"""
|
||||
Load passages from a JSONL file with label map support
|
||||
Expected format: {"id": "passage_id", "text": "passage_text", "metadata": {...}} (one per line)
|
||||
"""
|
||||
|
||||
if not os.path.exists(passages_file):
|
||||
raise FileNotFoundError(f"Passages file {passages_file} not found.")
|
||||
|
||||
if not passages_file.endswith('.jsonl'):
|
||||
raise ValueError(f"Expected .jsonl file format, got: {passages_file}")
|
||||
|
||||
# Load label map (int -> string_id)
|
||||
passages_dir = Path(passages_file).parent
|
||||
label_map_file = passages_dir / "leann.labels.map"
|
||||
|
||||
label_map = {}
|
||||
if label_map_file.exists():
|
||||
with open(label_map_file, 'rb') as f:
|
||||
label_map = pickle.load(f)
|
||||
print(f"Loaded label map with {len(label_map)} entries")
|
||||
else:
|
||||
raise FileNotFoundError(f"Label map file not found: {label_map_file}")
|
||||
|
||||
# Load passages by string ID
|
||||
string_id_passages = {}
|
||||
with open(passages_file, 'r', encoding='utf-8') as f:
|
||||
for line in f:
|
||||
if line.strip():
|
||||
passage = json.loads(line)
|
||||
string_id_passages[passage['id']] = passage['text']
|
||||
|
||||
# Create int ID -> text mapping using label map
|
||||
passages_data = {}
|
||||
for int_id, string_id in label_map.items():
|
||||
if string_id in string_id_passages:
|
||||
passages_data[str(int_id)] = string_id_passages[string_id]
|
||||
else:
|
||||
print(f"WARNING: String ID {string_id} from label map not found in passages")
|
||||
|
||||
print(f"Loaded {len(passages_data)} passages from JSONL file {passages_file} using label map")
|
||||
return SimplePassageLoader(passages_data)
|
||||
|
||||
def create_embedding_server_thread(
|
||||
zmq_port=5555,
|
||||
@@ -113,7 +205,20 @@ def create_embedding_server_thread(
|
||||
|
||||
# Load passages from file if provided
|
||||
if passages_file and os.path.exists(passages_file):
|
||||
passages = load_passages_from_file(passages_file)
|
||||
# Check if it's a metadata file or a single passages file
|
||||
if passages_file.endswith('.meta.json'):
|
||||
passages = load_passages_from_metadata(passages_file)
|
||||
else:
|
||||
# Try to find metadata file in same directory
|
||||
passages_dir = Path(passages_file).parent
|
||||
meta_files = list(passages_dir.glob("*.meta.json"))
|
||||
if meta_files:
|
||||
print(f"Found metadata file: {meta_files[0]}, using lazy loading")
|
||||
passages = load_passages_from_metadata(str(meta_files[0]))
|
||||
else:
|
||||
# Fallback to original single file loading (will cause warnings)
|
||||
print("WARNING: No metadata file found, using single file loading (may cause missing passage warnings)")
|
||||
passages = load_passages_from_file(passages_file)
|
||||
else:
|
||||
print("WARNING: No passages file provided or file not found. Using an empty passage loader.")
|
||||
passages = SimplePassageLoader()
|
||||
|
||||
Submodule packages/leann-backend-diskann/third_party/DiskANN updated: 2dcf156553...c7a9d681cb
Reference in New Issue
Block a user