Datastore reproduce (#3)

* fix: diskann zmq port and passages

* feat: auto discovery of packages and fix passage gen for diskann

* docs: embedding pruning

* refactor: passage structure

* feat: reproducible research datas, rpj_wiki & dpr

* refactor: chat and base searcher

* feat: chat on mps
This commit is contained in:
Andy Lee
2025-07-11 23:37:23 -07:00
committed by GitHub
parent 91a026f38b
commit eb6f504789
22 changed files with 5070 additions and 3681 deletions

View File

@@ -468,16 +468,27 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
# --- Write CSR HNSW graph data using unified function ---
print(f"[{time.time() - start_time:.2f}s] Writing CSR HNSW graph data in FAISS-compatible order...")
# Determine storage fourcc based on prune_embeddings
output_storage_fourcc = NULL_INDEX_FOURCC if prune_embeddings else (storage_fourcc if 'storage_fourcc' in locals() else NULL_INDEX_FOURCC)
# Determine storage fourcc and data based on prune_embeddings
if prune_embeddings:
print(f" Pruning embeddings: Writing NULL storage marker.")
storage_data = b''
output_storage_fourcc = NULL_INDEX_FOURCC
storage_data = b''
else:
# Keep embeddings - read and preserve original storage data
if storage_fourcc and storage_fourcc != NULL_INDEX_FOURCC:
print(f" Preserving embeddings: Reading original storage data...")
storage_data = f_in.read() # Read remaining storage data
output_storage_fourcc = storage_fourcc
print(f" Read {len(storage_data)} bytes of storage data")
else:
print(f" No embeddings found in original file (NULL storage)")
output_storage_fourcc = NULL_INDEX_FOURCC
storage_data = b''
# Use the unified write function
write_compact_format(f_out, original_hnsw_data, assign_probas_np, cum_nneighbor_per_level_np,
levels_np, compact_level_ptr, compact_node_offsets_np,
compact_neighbors_data, output_storage_fourcc, storage_data if not prune_embeddings else b'')
compact_neighbors_data, output_storage_fourcc, storage_data)
# Clean up memory
del assign_probas_np, cum_nneighbor_per_level_np, levels_np

View File

@@ -1,18 +1,12 @@
import numpy as np
import os
import json
import struct
from pathlib import Path
from typing import Dict, Any
import contextlib
import threading
import time
import atexit
import socket
import subprocess
import sys
from typing import Dict, Any, List
import pickle
import shutil
from leann.embedding_server_manager import EmbeddingServerManager
from leann.searcher_base import BaseSearcher
from .convert_to_csr import convert_hnsw_graph_to_csr
from leann.registry import register_backend
@@ -38,349 +32,130 @@ class HNSWBackend(LeannBackendFactoryInterface):
@staticmethod
def searcher(index_path: str, **kwargs) -> LeannBackendSearcherInterface:
path = Path(index_path)
meta_path = path.parent / f"{path.name}.meta.json"
if not meta_path.exists():
raise FileNotFoundError(f"Leann metadata file not found at {meta_path}.")
with open(meta_path, 'r') as f:
meta = json.load(f)
kwargs['meta'] = meta
return HNSWSearcher(index_path, **kwargs)
class HNSWBuilder(LeannBackendBuilderInterface):
def __init__(self, **kwargs):
self.build_params = kwargs.copy()
# --- Configuration defaults with standardized names ---
self.is_compact = self.build_params.setdefault("is_compact", True)
self.is_recompute = self.build_params.setdefault("is_recompute", True)
# --- Additional Options ---
self.is_skip_neighbors = self.build_params.setdefault("is_skip_neighbors", False)
self.disk_cache_ratio = self.build_params.setdefault("disk_cache_ratio", 0.0)
self.external_storage_path = self.build_params.get("external_storage_path", None)
# --- Standard HNSW parameters ---
self.M = self.build_params.setdefault("M", 32)
self.efConstruction = self.build_params.setdefault("efConstruction", 200)
self.distance_metric = self.build_params.setdefault("distance_metric", "mips")
self.dimensions = self.build_params.get("dimensions")
if self.is_skip_neighbors and not self.is_compact:
raise ValueError("is_skip_neighbors can only be used with is_compact=True")
if self.is_recompute and not self.is_compact:
raise ValueError("is_recompute requires is_compact=True for efficiency")
def build(self, data: np.ndarray, index_path: str, **kwargs):
"""Build HNSW index using FAISS"""
def build(self, data: np.ndarray, ids: List[str], index_path: str, **kwargs):
from . import faiss
path = Path(index_path)
index_dir = path.parent
index_prefix = path.stem
index_dir.mkdir(parents=True, exist_ok=True)
if data.dtype != np.float32:
data = data.astype(np.float32)
if not data.flags['C_CONTIGUOUS']:
data = np.ascontiguousarray(data)
metric_str = self.distance_metric.lower()
metric_enum = get_metric_map().get(metric_str)
label_map = {i: str_id for i, str_id in enumerate(ids)}
label_map_file = index_dir / "leann.labels.map"
with open(label_map_file, 'wb') as f:
pickle.dump(label_map, f)
metric_enum = get_metric_map().get(self.distance_metric.lower())
if metric_enum is None:
raise ValueError(f"Unsupported distance_metric '{metric_str}'.")
raise ValueError(f"Unsupported distance_metric '{self.distance_metric}'.")
M = self.M
efConstruction = self.efConstruction
dim = self.dimensions
if not dim:
dim = data.shape[1]
dim = self.dimensions or data.shape[1]
index = faiss.IndexHNSWFlat(dim, self.M, metric_enum)
index.hnsw.efConstruction = self.efConstruction
print(f"INFO: Building HNSW index for {data.shape[0]} vectors with metric {metric_enum}...")
try:
index = faiss.IndexHNSWFlat(dim, M, metric_enum)
index.hnsw.efConstruction = efConstruction
if metric_str == "cosine":
faiss.normalize_L2(data)
index.add(data.shape[0], faiss.swig_ptr(data))
index_file = index_dir / f"{index_prefix}.index"
faiss.write_index(index, str(index_file))
print(f"✅ HNSW index built successfully at '{index_file}'")
if self.distance_metric.lower() == "cosine":
faiss.normalize_L2(data)
if self.is_compact:
self._convert_to_csr(index_file)
if self.is_recompute:
self._generate_passages_file(index_dir, index_prefix, **kwargs)
except Exception as e:
print(f"💥 ERROR: HNSW index build failed. Exception: {e}")
raise
index.add(data.shape[0], faiss.swig_ptr(data))
index_file = index_dir / f"{index_prefix}.index"
faiss.write_index(index, str(index_file))
if self.is_compact:
self._convert_to_csr(index_file)
def _convert_to_csr(self, index_file: Path):
"""Convert built index to CSR format"""
try:
mode_str = "CSR-pruned" if self.is_recompute else "CSR-standard"
print(f"INFO: Converting HNSW index to {mode_str} format...")
csr_temp_file = index_file.with_suffix(".csr.tmp")
success = convert_hnsw_graph_to_csr(
str(index_file),
str(csr_temp_file),
prune_embeddings=self.is_recompute
)
if success:
print("✅ CSR conversion successful.")
import shutil
# rename index_file to index_file.old
index_file_old = index_file.with_suffix(".old")
shutil.move(str(index_file), str(index_file_old))
shutil.move(str(csr_temp_file), str(index_file))
print(f"INFO: Replaced original index with {mode_str} version at '{index_file}'")
else:
# Clean up and fail fast
if csr_temp_file.exists():
os.remove(csr_temp_file)
raise RuntimeError("CSR conversion failed - cannot proceed with compact format")
except Exception as e:
print(f"💥 ERROR: CSR conversion failed. Exception: {e}")
raise
mode_str = "CSR-pruned" if self.is_recompute else "CSR-standard"
print(f"INFO: Converting HNSW index to {mode_str} format...")
def _generate_passages_file(self, index_dir: Path, index_prefix: str, **kwargs):
"""Generate passages file for recompute mode"""
try:
chunks = kwargs.get('chunks', [])
if not chunks:
print("INFO: No chunks data provided, skipping passages file generation")
return
# Generate node_id to text mapping
passages_data = {}
for node_id, chunk in enumerate(chunks):
passages_data[str(node_id)] = chunk["text"]
# Save passages file
passages_file = index_dir / f"{index_prefix}.passages.json"
with open(passages_file, 'w', encoding='utf-8') as f:
json.dump(passages_data, f, ensure_ascii=False, indent=2)
print(f"✅ Generated passages file for recompute mode at '{passages_file}' ({len(passages_data)} passages)")
except Exception as e:
print(f"💥 ERROR: Failed to generate passages file. Exception: {e}")
# Don't raise - this is not critical for index building
pass
csr_temp_file = index_file.with_suffix(".csr.tmp")
class HNSWSearcher(LeannBackendSearcherInterface):
def _get_index_storage_status(self, index_file: Path) -> tuple[bool, bool]:
"""
Robustly determines the index's storage status by parsing the file.
Returns:
A tuple (is_compact, is_pruned).
"""
if not index_file.exists():
return False, False
with open(index_file, 'rb') as f:
try:
def read_struct(fmt):
size = struct.calcsize(fmt)
data = f.read(size)
if len(data) != size:
raise EOFError(f"File ended unexpectedly reading struct fmt '{fmt}'.")
return struct.unpack(fmt, data)[0]
success = convert_hnsw_graph_to_csr(
str(index_file),
str(csr_temp_file),
prune_embeddings=self.is_recompute
)
def skip_vector(element_size):
count = read_struct('<Q')
f.seek(count * element_size, 1)
# 1. Read up to the compact flag
read_struct('<I'); read_struct('<i'); read_struct('<q');
read_struct('<q'); read_struct('<q'); read_struct('<?')
metric_type = read_struct('<i')
if metric_type > 1: read_struct('<f')
skip_vector(8); skip_vector(4); skip_vector(4)
# 2. Check if there's a compact flag byte
# Try to read the compact flag, but handle both old and new formats
pos_before_compact = f.tell()
try:
is_compact = read_struct('<?')
print(f"INFO: Detected is_compact flag as: {is_compact}")
except (EOFError, struct.error):
# Old format without compact flag - assume non-compact
f.seek(pos_before_compact)
is_compact = False
print(f"INFO: No compact flag found, assuming is_compact=False")
# 3. Read storage FourCC to determine if pruned
is_pruned = False
try:
if is_compact:
# For compact, we need to skip pointers and scalars to get to the storage FourCC
skip_vector(8) # level_ptr
skip_vector(8) # node_offsets
read_struct('<i'); read_struct('<i'); read_struct('<i');
read_struct('<i'); read_struct('<i')
storage_fourcc = read_struct('<I')
else:
# For non-compact, we need to read the flag probe, then skip offsets and neighbors
pos_before_probe = f.tell()
flag_byte = f.read(1)
if not (flag_byte and flag_byte == b'\x00'):
f.seek(pos_before_probe)
skip_vector(8); skip_vector(4) # offsets, neighbors
read_struct('<i'); read_struct('<i'); read_struct('<i');
read_struct('<i'); read_struct('<i')
# Now we are at the storage. The entire rest is storage blob.
storage_fourcc = struct.unpack('<I', f.read(4))[0]
NULL_INDEX_FOURCC = int.from_bytes(b'null', 'little')
if storage_fourcc == NULL_INDEX_FOURCC:
is_pruned = True
except (EOFError, struct.error):
# Cannot determine pruning status, assume not pruned
pass
print(f"INFO: Detected is_pruned as: {is_pruned}")
return is_compact, is_pruned
except (EOFError, struct.error) as e:
print(f"WARNING: Could not parse index file to detect format: {e}. Assuming standard, not pruned.")
return False, False
if success:
print("✅ CSR conversion successful.")
index_file_old = index_file.with_suffix(".old")
shutil.move(str(index_file), str(index_file_old))
shutil.move(str(csr_temp_file), str(index_file))
print(f"INFO: Replaced original index with {mode_str} version at '{index_file}'")
else:
# Clean up and fail fast
if csr_temp_file.exists():
os.remove(csr_temp_file)
raise RuntimeError("CSR conversion failed - cannot proceed with compact format")
class HNSWSearcher(BaseSearcher):
def __init__(self, index_path: str, **kwargs):
super().__init__(index_path, backend_module_name="leann_backend_hnsw.hnsw_embedding_server", **kwargs)
from . import faiss
self.meta = kwargs.get("meta", {})
if not self.meta:
raise ValueError("HNSWSearcher requires metadata from .meta.json.")
self.dimensions = self.meta.get("dimensions")
if not self.dimensions:
raise ValueError("Dimensions not found in Leann metadata.")
self.distance_metric = self.meta.get("distance_metric", "mips").lower()
metric_enum = get_metric_map().get(self.distance_metric)
if metric_enum is None:
raise ValueError(f"Unsupported distance_metric '{self.distance_metric}'.")
self.embedding_model = self.meta.get("embedding_model")
if not self.embedding_model:
print("WARNING: embedding_model not found in meta.json. Recompute will fail if attempted.")
self.is_compact, self.is_pruned = (
self.meta.get('is_compact', True),
self.meta.get('is_pruned', True)
)
path = Path(index_path)
self.index_dir = path.parent
self.index_prefix = path.stem
index_file = self.index_dir / f"{self.index_prefix}.index"
index_file = self.index_dir / f"{self.index_path.stem}.index"
if not index_file.exists():
raise FileNotFoundError(f"HNSW index file not found at {index_file}")
self.is_compact, self.is_pruned = self._get_index_storage_status(index_file)
# Validate configuration constraints
if not self.is_compact and kwargs.get("is_skip_neighbors", False):
raise ValueError("is_skip_neighbors can only be used with is_compact=True")
if kwargs.get("is_recompute", False) and kwargs.get("external_storage_path"):
raise ValueError("Cannot use both is_recompute and external_storage_path simultaneously")
hnsw_config = faiss.HNSWIndexConfig()
hnsw_config.is_compact = self.is_compact
# Apply additional configuration options with strict validation
hnsw_config.is_skip_neighbors = kwargs.get("is_skip_neighbors", False)
hnsw_config.is_recompute = self.is_pruned or kwargs.get("is_recompute", False)
hnsw_config.disk_cache_ratio = kwargs.get("disk_cache_ratio", 0.0)
hnsw_config.external_storage_path = kwargs.get("external_storage_path")
self.zmq_port = kwargs.get("zmq_port", 5557)
if self.is_pruned and not hnsw_config.is_recompute:
raise RuntimeError("Index is pruned (embeddings removed) but recompute is disabled. This is impossible - recompute must be enabled for pruned indices.")
print(f"INFO: Loading index with is_compact={self.is_compact}, is_pruned={self.is_pruned}")
print(f"INFO: Config - skip_neighbors={hnsw_config.is_skip_neighbors}, recompute={hnsw_config.is_recompute}")
self._index = faiss.read_index(str(index_file), faiss.IO_FLAG_MMAP, hnsw_config)
if self.is_compact:
print("✅ Compact CSR format HNSW index loaded successfully.")
else:
print("✅ Standard HNSW index loaded successfully.")
self.embedding_server_manager = EmbeddingServerManager(
backend_module_name="leann_backend_hnsw.hnsw_embedding_server"
)
if self.is_pruned and not hnsw_config.is_recompute:
raise RuntimeError("Index is pruned but recompute is disabled.")
self._index = faiss.read_index(str(index_file), faiss.IO_FLAG_MMAP, hnsw_config)
def search(self, query: np.ndarray, top_k: int, **kwargs) -> Dict[str, Any]:
"""Search using HNSW index with optional recompute functionality"""
from . import faiss
ef = kwargs.get("complexity", 200)
if self.is_pruned:
print(f"INFO: Index is pruned - ensuring embedding server is running for recompute.")
if not self.embedding_model:
raise ValueError("Cannot use recompute mode without 'embedding_model' in meta.json.")
passages_file = kwargs.get("passages_file")
if not passages_file:
potential_passages_file = self.index_dir / f"{self.index_prefix}.passages.json"
if potential_passages_file.exists():
passages_file = str(potential_passages_file)
print(f"INFO: Automatically found passages file: {passages_file}")
else:
raise RuntimeError(f"FATAL: Index is pruned but no passages file found.")
meta_file_path = self.index_dir / f"{self.index_path.name}.meta.json"
if not meta_file_path.exists():
raise RuntimeError(f"FATAL: Index is pruned but metadata file not found: {meta_file_path}")
zmq_port = kwargs.get("zmq_port", 5557)
server_started = self.embedding_server_manager.start_server(
port=zmq_port,
model_name=self.embedding_model,
passages_file=passages_file,
distance_metric=self.distance_metric
)
if not server_started:
raise RuntimeError(f"Failed to start HNSW embedding server on port {zmq_port}")
self._ensure_server_running(str(meta_file_path), port=zmq_port, **kwargs)
if query.dtype != np.float32:
query = query.astype(np.float32)
if query.ndim == 1:
query = np.expand_dims(query, axis=0)
if self.distance_metric == "cosine":
faiss.normalize_L2(query)
try:
params = faiss.SearchParametersHNSW()
params.efSearch = ef
params.zmq_port = kwargs.get("zmq_port", self.zmq_port)
batch_size = query.shape[0]
distances = np.empty((batch_size, top_k), dtype=np.float32)
labels = np.empty((batch_size, top_k), dtype=np.int64)
self._index.search(query.shape[0], faiss.swig_ptr(query), top_k, faiss.swig_ptr(distances), faiss.swig_ptr(labels), params)
return {"labels": labels, "distances": distances}
except Exception as e:
print(f"💥 ERROR: HNSW search failed. Exception: {e}")
raise
def __del__(self):
if hasattr(self, 'embedding_server_manager'):
self.embedding_server_manager.stop_server()
params = faiss.SearchParametersHNSW()
params.zmq_port = kwargs.get("zmq_port", 5557)
params.efSearch = kwargs.get("complexity", 32)
params.beam_size = kwargs.get("beam_width", 1)
batch_size = query.shape[0]
distances = np.empty((batch_size, top_k), dtype=np.float32)
labels = np.empty((batch_size, top_k), dtype=np.int64)
self._index.search(query.shape[0], faiss.swig_ptr(query), top_k, faiss.swig_ptr(distances), faiss.swig_ptr(labels), params)
string_labels = [[self.label_map.get(int_label, f"unknown_{int_label}") for int_label in batch_labels] for batch_labels in labels]
return {"labels": string_labels, "distances": distances}

View File

@@ -56,23 +56,73 @@ class SimplePassageLoader:
def __len__(self) -> int:
return len(self.passages_data)
def load_passages_from_file(passages_file: str) -> SimplePassageLoader:
def load_passages_from_metadata(meta_file: str) -> SimplePassageLoader:
"""
Load passages from a JSON file
Expected format: {"passage_id": "passage_text", ...}
Load passages using metadata file with PassageManager for lazy loading
"""
if not os.path.exists(passages_file):
print(f"Warning: Passages file {passages_file} not found. Using empty loader.")
return SimplePassageLoader()
# Load metadata to get passage sources
with open(meta_file, 'r') as f:
meta = json.load(f)
# Import PassageManager dynamically to avoid circular imports
import sys
import importlib.util
# Find the leann package directory relative to this file
current_dir = Path(__file__).parent
leann_core_path = current_dir.parent.parent / "leann-core" / "src"
sys.path.insert(0, str(leann_core_path))
try:
with open(passages_file, 'r', encoding='utf-8') as f:
passages_data = json.load(f)
print(f"Loaded {len(passages_data)} passages from {passages_file}")
return SimplePassageLoader(passages_data)
except Exception as e:
print(f"Error loading passages from {passages_file}: {e}")
return SimplePassageLoader()
from leann.api import PassageManager
passage_manager = PassageManager(meta['passage_sources'])
finally:
sys.path.pop(0)
# Load label map
passages_dir = Path(meta_file).parent
label_map_file = passages_dir / "leann.labels.map"
if label_map_file.exists():
import pickle
with open(label_map_file, 'rb') as f:
label_map = pickle.load(f)
print(f"Loaded label map with {len(label_map)} entries")
else:
raise FileNotFoundError(f"Label map file not found: {label_map_file}")
print(f"Initialized lazy passage loading for {len(label_map)} passages")
class LazyPassageLoader(SimplePassageLoader):
def __init__(self, passage_manager, label_map):
self.passage_manager = passage_manager
self.label_map = label_map
# Initialize parent with empty data
super().__init__({})
def __getitem__(self, passage_id: Union[str, int]) -> Dict[str, str]:
"""Get passage by ID with lazy loading"""
try:
int_id = int(passage_id)
if int_id in self.label_map:
string_id = self.label_map[int_id]
passage_data = self.passage_manager.get_passage(string_id)
if passage_data and passage_data.get("text"):
return {"text": passage_data["text"]}
else:
print(f"DEBUG: Empty text for ID {int_id} -> {string_id}")
return {"text": ""}
else:
print(f"DEBUG: ID {int_id} not found in label_map")
return {"text": ""}
except Exception as e:
print(f"DEBUG: Exception getting passage {passage_id}: {e}")
return {"text": ""}
def __len__(self) -> int:
return len(self.label_map)
return LazyPassageLoader(passage_manager, label_map)
def create_hnsw_embedding_server(
passages_file: Optional[str] = None,
@@ -158,7 +208,20 @@ def create_hnsw_embedding_server(
passages = SimplePassageLoader(passages_data)
print(f"Using provided passages data: {len(passages)} passages")
elif passages_file:
passages = load_passages_from_file(passages_file)
# Check if it's a metadata file or a single passages file
if passages_file.endswith('.meta.json'):
passages = load_passages_from_metadata(passages_file)
else:
# Try to find metadata file in same directory
passages_dir = Path(passages_file).parent
meta_files = list(passages_dir.glob("*.meta.json"))
if meta_files:
print(f"Found metadata file: {meta_files[0]}, using lazy loading")
passages = load_passages_from_metadata(str(meta_files[0]))
else:
# Fallback to original single file loading (will cause warnings)
print("WARNING: No metadata file found, using single file loading (may cause missing passage warnings)")
passages = SimplePassageLoader() # Use empty loader to avoid massive warnings
else:
passages = SimplePassageLoader()
print("No passages provided, using empty loader")
@@ -227,6 +290,11 @@ def create_hnsw_embedding_server(
_is_bge_model = "bge" in model_name.lower()
batch_size = len(texts_batch)
# Validate no empty texts
for i, text in enumerate(texts_batch):
if not text or text.strip() == "":
raise RuntimeError(f"FATAL: Empty text at batch index {i}, ID: {ids_batch[i] if i < len(ids_batch) else 'unknown'}")
# E5 model preprocessing
if _is_e5_model:
processed_texts_batch = [f"passage: {text}" for text in texts_batch]
@@ -373,14 +441,12 @@ def create_hnsw_embedding_server(
missing_ids = []
with lookup_timer.timing():
for nid in node_ids:
try:
txtinfo = passages[nid]
if txtinfo is None or txtinfo["text"] == "":
raise RuntimeError(f"FATAL: Passage with ID {nid} not found - failing fast")
else:
txt = txtinfo["text"]
except (KeyError, IndexError):
raise RuntimeError(f"FATAL: Passage with ID {nid} not found - failing fast")
print(f"DEBUG: Looking up passage ID {nid}")
txtinfo = passages[nid]
if txtinfo is None or txtinfo["text"] == "":
raise RuntimeError(f"FATAL: Passage with ID {nid} returned empty text")
txt = txtinfo["text"]
print(f"DEBUG: Found text for ID {nid}, length: {len(txt)}")
texts.append(txt)
lookup_timer.print_elapsed()

View File

@@ -1,4 +1,4 @@
# 文件: packages/leann-backend-hnsw/pyproject.toml
# packages/leann-backend-hnsw/pyproject.toml
[build-system]
requires = ["scikit-build-core>=0.10", "numpy", "swig"]
@@ -10,7 +10,6 @@ version = "0.1.0"
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
dependencies = ["leann-core==0.1.0", "numpy"]
# 回归到最标准的 scikit-build-core 配置
[tool.scikit-build]
wheel.packages = ["leann_backend_hnsw"]
editable.mode = "redirect"